File size: 28,346 Bytes
e775f6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
import os

import torch; torch.manual_seed(0)
import torch.nn as nn
import torch.nn.functional as F
import torch.utils
import torch.distributions
import numpy as np
import matplotlib.pyplot as plt; plt.rcParams['figure.dpi'] = 200
from vae_model import get_gml_vae_models
from utils import get_dataloaders, compute_swd_loss
import matplotlib.pyplot as plt
from src.music.config import MUSIC_REP_PATH
from src.cocktails.config import FULL_COCKTAIL_REP_PATH
import json
import argparse
device = 'cuda' if torch.cuda.is_available() else 'cpu'

if torch.cuda.is_available():
    print('Using GPUs')
else:
    print('Using CPUs')

music_rep_path = "/home/cedric/Documents/pianocktail/data/music/represented_small/"
music_rep_path = MUSIC_REP_PATH + "music_reps_normalized_meanstd.pickle"
# music_rep_path = "/home/cedric/Documents/pianocktail/data/music/32_represented/reps.pickle"
LOSS = nn.CrossEntropyLoss()
def run_epoch(epoch, model, data, params, opt, train):
    if epoch == params['n_epochs_music_pretrain']:
        print(f'Switching to bs: {params["batch_size"]}')
        for k in data.keys():
            prefix = 'train' if train else 'test'
            data[k].batch_sampler.update_epoch_size_and_batch(params[prefix + '_epoch_size'], params['batch_size'])
    if train:
        model.train()
    else:
        model.eval()
    keys_to_track = params['keys_to_track']
    losses = dict(zip(keys_to_track, [[] for _ in range(len(keys_to_track))]))
    step = 0
    cf_matrices_music = []
    cf_matrices_cocktail = []
    for i_batch, data_music, data_cocktail, data_music_lab, data_cocktail_lab, data_reg_grounding \
            in zip(range(len(data['music'])), data['music'], data['cocktail'], data['music_labeled'], data['cocktail_labeled'], data['reg_grounding']):
        x_music, _ = data_music
        x_cocktail, _, contains_egg, contains_bubbles = data_cocktail
        x_music_lab, labels_music = data_music_lab
        x_cocktail_lab, labels_cocktail = data_cocktail_lab
        x_reg_music, x_reg_cocktail = data_reg_grounding
        step += x_music.shape[0]
        if train: opt.zero_grad()

        # weight more examples that have bubbles or egg in the mse computation
        bubbles_egg_weights = torch.ones([contains_bubbles.shape[0]])
        bubbles_egg_weights[contains_bubbles] += 1
        bubbles_egg_weights[contains_egg] += 3

        # vae
        x_hat_cocktail, z_cocktail, mu_cocktail, log_var_cocktail  = model(x_cocktail, modality_in='cocktail', modality_out='cocktail')
        mse_loss_cocktail = torch.sum(((x_cocktail - x_hat_cocktail)**2).mean(axis=1) * bubbles_egg_weights) / bubbles_egg_weights.sum()
        if contains_bubbles.sum() > 0:
            bubble_mse = float(((x_cocktail - x_hat_cocktail)**2)[contains_bubbles, -3].mean())
        else:
            bubble_mse = np.nan
        if contains_egg.sum() > 0:
            egg_mse = float(((x_cocktail - x_hat_cocktail)**2)[contains_egg, -1].mean())
        else:
            egg_mse = np.nan

        kld_loss_cocktail = torch.mean(-0.5 * torch.sum(1 + log_var_cocktail - mu_cocktail ** 2 - log_var_cocktail.exp(), dim=1))

        x_hat_music, z_music, mu_music, log_var_music = model(x_music, modality_in='music', modality_out='music')
        mse_loss_music = ((x_music - x_hat_music)**2).mean()
        kld_loss_music = torch.mean(-0.5 * torch.sum(1 + log_var_music - mu_music ** 2 - log_var_music.exp(), dim=1))

        music_vae_loss = mse_loss_music + params['beta_vae'] * kld_loss_music
        cocktail_vae_loss = mse_loss_cocktail + params['beta_vae'] * kld_loss_cocktail
        vae_loss = cocktail_vae_loss + params['beta_music'] * music_vae_loss
        # music_vae_loss = mse_loss_music + params['beta_vae'] * kld_loss_music
        brb_kld_loss_cocktail, brb_kld_loss_music, brb_mse_loss_music, brb_mse_loss_cocktail, brb_mse_latent_loss, brb_music_vae_loss, brb_vae_loss = [0] * 7

        if params['use_brb_vae']:
            # vae back to back
            out = model.forward_b2b(x_cocktail, modality_in_out='cocktail', modality_intermediate='music')
            x_hat_cocktail, x_intermediate_music, mu_cocktail, log_var_cocktail, z_cocktail, mu_music, log_var_music, z_music = out
            brb_mse_loss_cocktail = ((x_cocktail - x_hat_cocktail) ** 2).mean()
            brb_mse_latent_loss_1 = ((z_music - z_cocktail) ** 2).mean()
            brb_kld_loss_cocktail_1 = torch.mean(-0.5 * torch.sum(1 + log_var_cocktail - mu_cocktail ** 2 - log_var_cocktail.exp(), dim=1))
            brb_kld_loss_music_1 = torch.mean(-0.5 * torch.sum(1 + log_var_music - mu_music ** 2 - log_var_music.exp(), dim=1))
            # brb_cocktail_in_loss = mse_loss_cocktail + mse_latents_1 + params['beta_vae'] * (kld_loss_cocktail + kld_loss_music)

            out = model.forward_b2b(x_music, modality_in_out='music', modality_intermediate='cocktail')
            x_hat_music, x_intermediate_cocktail, mu_music, log_var_music, z_music, mu_cocktail, log_var_cocktail, z_cocktail = out
            brb_mse_loss_music = ((x_music - x_hat_music) ** 2).mean()
            brb_mse_latent_loss_2 = ((z_music - z_cocktail) ** 2).mean()
            brb_kld_loss_cocktail_2 = torch.mean(-0.5 * torch.sum(1 + log_var_cocktail - mu_cocktail ** 2 - log_var_cocktail.exp(), dim=1))
            brb_kld_loss_music_2 = torch.mean(-0.5 * torch.sum(1 + log_var_music - mu_music ** 2 - log_var_music.exp(), dim=1))
            # brb_music_in_loss = mse_loss_music + mse_latents_2 + params['beta_vae'] * (kld_loss_cocktail + kld_loss_music)
            brb_mse_latent_loss = (brb_mse_latent_loss_1 + brb_mse_latent_loss_2) / 2
            brb_kld_loss_music = (brb_kld_loss_music_1 + brb_kld_loss_music_2) / 2
            brb_kld_loss_cocktail = (brb_kld_loss_cocktail_1 + brb_kld_loss_cocktail_2) / 2
            brb_vae_loss = brb_mse_latent_loss + brb_mse_loss_cocktail + brb_mse_loss_music + params['beta_vae'] * (brb_kld_loss_music + brb_kld_loss_cocktail)
            brb_music_vae_loss = brb_mse_loss_music + params['beta_vae'] * brb_kld_loss_music + brb_mse_latent_loss

        # swd
        if params['beta_swd'] > 0:
            swd_loss = compute_swd_loss(z_music, z_cocktail, params['latent_dim'])
        else:
            swd_loss = 0

        # classif losses
        if params['beta_classif'] > 0:
            pred_music = model.classify(x_music_lab, modality_in='music')
            classif_loss_music = LOSS(pred_music, labels_music)
            accuracy_music = torch.mean((torch.argmax(pred_music, dim=1) == labels_music).float())
            cf_matrices_music.append(get_cf_matrix(pred_music, labels_music))
            pred_cocktail = model.classify(x_cocktail_lab, modality_in='cocktail')
            classif_loss_cocktail = LOSS(pred_cocktail, labels_cocktail)
            accuracy_cocktail = torch.mean((torch.argmax(pred_cocktail, dim=1) == labels_cocktail).float())
            cf_matrices_cocktail.append(get_cf_matrix(pred_cocktail, labels_cocktail))

        else:
            classif_loss_cocktail, classif_loss_music = 0, 0
            accuracy_music, accuracy_cocktail = 0, 0
            cf_matrices_cocktail.append(np.zeros((2, 2)))
            cf_matrices_music.append(np.zeros((2, 2)))

        if params['beta_reg_grounding'] > 0:
            x_hat_cocktail, _, _, _ = model(x_reg_music, modality_in='music', modality_out='cocktail', freeze_decoder=True)
            mse_reg_grounding = ((x_reg_cocktail - x_hat_cocktail) ** 2).mean()
        else:
            mse_reg_grounding = 0

        if params['use_brb_vae']:
            global_minus_classif = params['beta_vae_loss'] * (vae_loss + brb_music_vae_loss) + params['beta_swd'] * swd_loss
            global_loss = params['beta_vae_loss'] * (vae_loss + brb_music_vae_loss) + params['beta_swd'] * swd_loss + \
                          params['beta_classif'] * (classif_loss_cocktail + params['beta_music_classif'] * classif_loss_music)
        else:
            global_minus_classif = params['beta_vae_loss'] * vae_loss + params['beta_swd'] * swd_loss
            global_loss = params['beta_vae_loss'] * vae_loss + params['beta_swd'] * swd_loss + params['beta_classif'] * (classif_loss_cocktail + classif_loss_music) + \
                          params['beta_reg_grounding'] * mse_reg_grounding
            # global_loss = params['beta_vae_loss'] * cocktail_vae_loss + params['beta_classif'] * (classif_loss_cocktail + classif_loss_music) + \
            #               params['beta_reg_grounding'] * mse_reg_grounding

        losses['brb_vae_loss'].append(float(brb_vae_loss))
        losses['brb_mse_latent_loss'].append(float(brb_mse_latent_loss))
        losses['brb_kld_loss_cocktail'].append(float(brb_kld_loss_cocktail))
        losses['brb_kld_loss_music'].append(float(brb_kld_loss_music))
        losses['brb_mse_loss_music'].append(float(brb_mse_loss_music))
        losses['brb_mse_loss_cocktail'].append(float(brb_mse_loss_cocktail))
        losses['swd_losses'].append(float(swd_loss))
        losses['vae_losses'].append(float(vae_loss))
        losses['kld_losses_music'].append(float(kld_loss_music))
        losses['kld_losses_cocktail'].append(float(kld_loss_cocktail))
        losses['mse_losses_music'].append(float(mse_loss_music))
        losses['mse_losses_cocktail'].append(float(mse_loss_cocktail))
        losses['global_losses'].append(float(global_loss))
        losses['classif_losses_music'].append(float(classif_loss_music))
        losses['classif_losses_cocktail'].append(float(classif_loss_cocktail))
        losses['classif_acc_cocktail'].append(float(accuracy_cocktail))
        losses['classif_acc_music'].append(float(accuracy_music))
        losses['beta_reg_grounding'].append(float(mse_reg_grounding))
        losses['bubble_mse'].append(bubble_mse)
        losses['egg_mse'].append(egg_mse)

        if train:
            # if epoch < params['n_epochs_music_pretrain']:
            #     music_vae_loss.backward()
            # elif epoch >= params['n_epochs_music_pretrain'] and epoch < (params['n_epochs_music_pretrain'] + params['n_epochs_train']):
            #     global_minus_classif.backward()
            # elif epoch >= (params['n_epochs_music_pretrain'] + params['n_epochs_train']):
            global_loss.backward()
            opt.step()

        if params['log_every'] != 0:
            if step != 0 and step % params['log_every'] == 0:
                print(f'\tBatch #{i_batch}')
                for k in params['keys_to_print']:
                    if k != 'steps':
                        print(f'\t    {k}: Train: {np.nanmean(losses[k][-params["log_every"]:]):.3f}')
                        # print(f'\t    {k}: Train: {torch.mean(torch.cat(losses[k][-params["log_every"]:])):.3f}')
    return losses, [np.mean(cf_matrices_music, axis=0), np.mean(cf_matrices_cocktail, axis=0)]

def get_cf_matrix(pred, labels):
    bs, dim = pred.shape
    labels = labels.detach().numpy()
    pred_labels = np.argmax(pred.detach().numpy(), axis=1)
    confusion_matrix = np.zeros((dim, dim))
    for i in range(bs):
        confusion_matrix[labels[i], pred_labels[i]] += 1
    for i in range(dim):
        if np.sum(confusion_matrix[i]) != 0:
            confusion_matrix[i] /= np.sum(confusion_matrix[i])
    return confusion_matrix

def train(model, dataloaders, params):
    keys_to_track = params['keys_to_track']
    opt = torch.optim.AdamW(list(model.parameters()), lr=params['lr'])
    if params['decay_step'] > 0: scheduler = torch.optim.lr_scheduler.StepLR(opt, step_size=params['decay_step'], gamma=0.5)
    all_train_losses = dict(zip(keys_to_track, [[] for _ in range(len(keys_to_track))]))
    all_eval_losses = dict(zip(keys_to_track, [[] for _ in range(len(keys_to_track))]))
    best_eval_loss = np.inf

    data_train = dict()
    data_test = dict()
    for k in dataloaders.keys():
        if '_train' in k:
            data_train[k[:-6]] = dataloaders[k]
        elif '_test' in k:
            data_test[k[:-5]] = dataloaders[k]
        else:
            raise ValueError
    # run first eval
    eval_losses, _ = run_epoch(0, model, data_test, params, opt, train=False)
    for k in params['keys_to_track']:
        if k == 'steps':
            all_train_losses[k].append(0)
            all_eval_losses[k].append(0)
        else:
            all_train_losses[k].append(np.nan)
            all_eval_losses[k].append(np.mean(eval_losses[k]))
            # all_train_losses[k].append(torch.Tensor([np.nan]))
            # all_eval_losses[k].append(torch.atleast_1d(torch.mean(torch.cat(eval_losses[k]))))
    print(f'Initial evaluation')
    for k in params['keys_to_print']:
        to_print = all_eval_losses[k][-1] if k != 'steps' else  all_eval_losses[k][-1]
        # to_print = all_eval_losses[k][-1][0] if k != 'steps' else  all_eval_losses[k][-1]
        print(f'    {k}: Eval: {to_print:.3f}')
    step = 0
    for epoch in range(params['epochs']):
        print(f'\n------------\nEpoch #{epoch}')
        # run training epoch
        train_losses, train_cf_matrices = run_epoch(epoch, model, data_train, params, opt, train=True)
        # run eval epoch
        eval_losses, eval_cf_matrices = run_epoch(epoch, model, data_test, params, opt, train=False)

        if epoch < params['n_epochs_music_pretrain']:
            epoch_size = params['pretrain_train_epoch_size']
        else:
            epoch_size = params['train_epoch_size']
        step += epoch_size
        for k in params['keys_to_track']:
            if k == 'steps':
                all_train_losses[k].append(epoch)
                all_eval_losses[k].append(epoch)
            else:
                all_train_losses[k].append(np.nanmean(train_losses[k]))
                all_eval_losses[k].append(np.nanmean(eval_losses[k]))
                # all_train_losses[k].append(torch.atleast_1d(torch.mean(torch.cat(train_losses[k]))))
                # all_eval_losses[k].append(torch.atleast_1d(torch.mean(torch.cat(eval_losses[k]))))
        if params['decay_step']: scheduler.step()
        # logging
        print(f'----\n\tEval epoch  #{epoch}')
        for k in params['keys_to_print']:
            to_print_eval = all_eval_losses[k][-1] if k != 'steps' else all_eval_losses[k][-1]
            to_print_train = all_train_losses[k][-1] if k != 'steps' else all_train_losses[k][-1]
            # to_print_eval = all_eval_losses[k][-1][0] if k != 'steps' else all_eval_losses[k][-1]
            # to_print_train = all_train_losses[k][-1][0] if k != 'steps' else all_train_losses[k][-1]
            print(f'\t    {k}: Eval: {to_print_eval:.3f} / Train: {to_print_train:.3f}')

        if epoch % params['plot_every'] == 0:
            plot_all_losses(all_train_losses.copy(), all_eval_losses.copy(), train_cf_matrices, eval_cf_matrices, params)
        # saving models
        save_losses(all_train_losses, all_eval_losses, params['save_path'] + 'results.txt')
        if params['save_every'] != 0:
            if epoch % params['save_every'] == 0:
                print('Saving model.')
                save_model(model, path=params['save_path'], name=f'epoch_{epoch}')
        if all_eval_losses['global_losses'][-1] < best_eval_loss:
            best_eval_loss = all_eval_losses['global_losses'][-1]
            print(f'New best eval loss: {best_eval_loss:.3f}, saving model.')
            # print(f'New best eval loss: {best_eval_loss[0]:.3f}, saving model.')
            save_model(model, path=params['save_path'], name='best_eval')
    print('Saving last model.')
    save_model(model, path=params['save_path'], name=f'last')
    return model, all_train_losses, all_eval_losses, train_cf_matrices, eval_cf_matrices

def save_losses(train_losses, eval_losses, path):
    results = []
    keys = sorted(train_losses.keys())
    for k in keys:
        if k != 'steps':
            results.append(train_losses[k])#list(torch.cat(train_losses[k]).detach().cpu().numpy()))
        else:
            results.append(train_losses[k])
    for k in keys:
        if k != 'steps':
            results.append(eval_losses[k])#list(torch.cat(eval_losses[k]).detach().cpu().numpy()))
        else:
            results.append(eval_losses[k])
    np.savetxt(path, np.array(results))

def save_model(model, path, name):
    torch.save(model.state_dict(), path + f'checkpoints_{name}.save')

def run_training(params):
    params = compute_expe_name_and_save_path(params)
    dataloaders, n_labels, stats = get_dataloaders(cocktail_rep_path=params['cocktail_rep_path'],
                                                   music_rep_path=params['music_rep_path'],
                                                   batch_size=params['pretrain_batch_size'],
                                                   train_epoch_size=params['pretrain_train_epoch_size'],
                                                   test_epoch_size=params['pretrain_test_epoch_size'])
    params['nb_classes'] = n_labels
    params['stats'] = stats
    params['classif_classes'] = dataloaders['music_labeled_train'].dataset.classes
    vae_gml_model = get_gml_vae_models(layer_type=params['layer_type'],
                                       input_dim_music=dataloaders['music_train'].dataset.dim_music,
                                       input_dim_cocktail=dataloaders['cocktail_train'].dataset.dim_cocktail,
                                       hidden_dim=params['hidden_dim'],
                                       n_hidden=params['n_hidden'],
                                       latent_dim=params['latent_dim'],
                                       nb_classes=params['nb_classes'],
                                       dropout=params['dropout'])
    params['dim_music'] = dataloaders['music_train'].dataset.dim_music
    params['dim_cocktail'] = dataloaders['cocktail_train'].dataset.dim_cocktail
    with open(params['save_path'] + 'params.json', 'w') as f:
        json.dump(params, f)
    models, train_losses, eval_losses, train_cf_matrices, eval_cf_matrices = train(vae_gml_model, dataloaders, params)
    plot_all_losses(train_losses.copy(), eval_losses.copy(), train_cf_matrices, eval_cf_matrices, params)
    return models, train_losses, eval_losses

def plot_all_losses(train_losses, eval_losses, train_cf_matrices, eval_cf_matrices, params):
    plot_losses(train_losses, train_cf_matrices, 'train', params)
    plot_losses(eval_losses, eval_cf_matrices, 'eval', params)

def plot_losses(losses, cf_matrices, split, params):
    save_path = params['save_path'] + 'plots/'
    os.makedirs(save_path, exist_ok=True)
    steps = losses['steps']
    for k in losses.keys():
        # if k != 'steps':
        #     losses[k] = losses[k]#torch.cat(losses[k]).detach().cpu().numpy()
        # else:
        losses[k] = np.array(losses[k])
    losses['sum_loss_classif'] = losses['classif_losses_music'] + losses['classif_losses_cocktail']
    losses['av_acc_classif'] = (losses['classif_acc_cocktail'] + losses['classif_acc_music'])/2
    losses['sum_mse_vae'] = losses['mse_losses_cocktail'] + losses['mse_losses_music']
    losses['sum_kld_vae'] = losses['kld_losses_cocktail'] + losses['kld_losses_music']


    plt.figure()
    for k in ['global_losses', 'vae_losses', 'swd_losses', 'sum_mse_vae', 'sum_kld_vae']:
        factor = 10  if k == 'swd_losses' else 1
        plt.plot(steps, losses[k] * factor, label=k)
    plt.title(split)
    plt.legend()
    plt.ylim([0, 2.5])
    plt.savefig(save_path + f'plot_high_level_losses_{split}.png')
    plt.close(plt.gcf())

    plt.figure()
    for k in ['classif_acc_cocktail', 'classif_acc_music']:
        plt.plot(steps, losses[k], label=k)
    plt.title(split)
    plt.ylim([0, 1])
    plt.legend()
    plt.savefig(save_path + f'plot_classif_accuracies_{split}.png')
    plt.close(plt.gcf())

    plt.figure()
    for k in ['mse_losses_cocktail', 'mse_losses_music', 'kld_losses_cocktail',
              'kld_losses_music', 'swd_losses', 'classif_losses_cocktail', 'classif_losses_music', 'beta_reg_grounding',
              'bubble_mse', 'egg_mse']:
        factor = 10  if k == 'swd_losses' else 1
        plt.plot(steps, losses[k] * factor, label=k)
    plt.title(split)
    plt.ylim([0, 2.5])
    plt.legend()
    plt.savefig(save_path + f'plot_detailed_losses_{split}.png')
    plt.close(plt.gcf())

    for i_k, k in enumerate(['music', 'cocktail']):
        plt.figure()
        plt.imshow(cf_matrices[i_k], vmin=0, vmax=1)
        labx = plt.xticks(range(len(params['classif_classes'])), params['classif_classes'], rotation=45)
        laby = plt.yticks(range(len(params['classif_classes'])), params['classif_classes'])
        labxx = plt.xlabel('predicted')
        labyy = plt.ylabel('true')
        plt.title(split + ' ' + k)
        plt.colorbar()
        plt.savefig(save_path + f'cf_matrix_{split}_{k}.png', artists=(labx, laby, labxx, labyy))
        plt.close(plt.gcf())

    if params['use_brb_vae']:
        plt.figure()
        for k in ['brb_vae_loss', 'brb_kld_loss_cocktail', 'brb_kld_loss_music', 'brb_mse_loss_music', 'brb_mse_loss_cocktail', 'mse_losses_music', 'brb_mse_latent_loss']:
            factor = 10  if k == 'swd_losses' else 1
            plt.plot(steps, losses[k] * factor, label=k)
        plt.title(split)
        plt.ylim([0, 2.5])
        plt.legend()
        plt.savefig(save_path + f'plot_detailed_brb_losses_{split}.png')
        plt.close(plt.gcf())

def parse_args():
    parser = argparse.ArgumentParser(description="")
    parser.add_argument("--save_path", type=str, default="/home/cedric/Documents/pianocktail/experiments/music/representation_learning/saved_models/latent_translation/")
    parser.add_argument("--trial_id", type=str, default="b256_r128_classif001_ld40_meanstd")
    parser.add_argument("--hidden_dim", type=int, default=256) #128
    parser.add_argument("--n_hidden", type=int, default=1)
    parser.add_argument("--latent_dim", type=int, default=40) #40
    parser.add_argument("--n_epochs_music_pretrain", type=int, default=0)
    parser.add_argument("--n_epochs_train", type=int, default=200)
    parser.add_argument("--n_epochs_classif_finetune", type=int, default=0)
    parser.add_argument("--beta_vae_loss", type=float, default=1.)
    parser.add_argument("--beta_vae", type=float, default=1.2) # keep this low~1 to allow music classification...
    parser.add_argument("--beta_swd", type=float, default=1)
    parser.add_argument("--beta_reg_grounding", type=float, default=2.5)
    parser.add_argument("--beta_classif", type=float, default=0.01)#0.01) #TODO: try 0.1, default 0.01
    parser.add_argument("--beta_music", type=float, default=100) # higher loss on the music that needs more to converge
    parser.add_argument("--beta_music_classif", type=float, default=300) # try300# higher loss on the music that needs more to converge
    parser.add_argument("--pretrain_batch_size", type=int, default=128)
    parser.add_argument("--batch_size", type=int, default=32)
    parser.add_argument("--lr", type=float, default=0.001)
    parser.add_argument("--decay_step", type=int, default=0)
    parser.add_argument("--cocktail_rep_path", type=str, default=FULL_COCKTAIL_REP_PATH)
    parser.add_argument("--music_rep_path", type=str, default=music_rep_path)
    parser.add_argument("--use_brb_vae", type=bool, default=False)
    parser.add_argument("--layer_type", type=str, default='gml')
    parser.add_argument("--dropout", type=float, default=0.2)

    # best parameters
    # parser = argparse.ArgumentParser(description="")
    # parser.add_argument("--save_path", type=str, default="/home/cedric/Documents/pianocktail/experiments/music/representation_learning/saved_models/latent_translation/")
    # parser.add_argument("--trial_id", type=str, default="b256_r128_classif001_ld40_meanstd")
    # parser.add_argument("--hidden_dim", type=int, default=256) #128
    # parser.add_argument("--n_hidden", type=int, default=1)
    # parser.add_argument("--latent_dim", type=int, default=40) #40
    # parser.add_argument("--n_epochs_music_pretrain", type=int, default=0)
    # parser.add_argument("--n_epochs_train", type=int, default=200)
    # parser.add_argument("--n_epochs_classif_finetune", type=int, default=0)
    # parser.add_argument("--beta_vae_loss", type=float, default=1.)
    # parser.add_argument("--beta_vae", type=float, default=1) # keep this low~1 to allow music classification...
    # parser.add_argument("--beta_swd", type=float, default=1)
    # parser.add_argument("--beta_reg_grounding", type=float, default=2.5)
    # parser.add_argument("--beta_classif", type=float, default=0.01)#0.01) #TODO: try 0.1, default 0.01
    # parser.add_argument("--beta_music", type=float, default=100) # higher loss on the music that needs more to converge
    # parser.add_argument("--beta_music_classif", type=float, default=300) # try300# higher loss on the music that needs more to converge
    # parser.add_argument("--pretrain_batch_size", type=int, default=128)
    # parser.add_argument("--batch_size", type=int, default=32)
    # parser.add_argument("--lr", type=float, default=0.001)
    # parser.add_argument("--decay_step", type=int, default=0)
    # parser.add_argument("--cocktail_rep_path", type=str, default=FULL_COCKTAIL_REP_PATH)
    # parser.add_argument("--music_rep_path", type=str, default=music_rep_path)
    # parser.add_argument("--use_brb_vae", type=bool, default=False)
    # parser.add_argument("--layer_type", type=str, default='gml')
    # parser.add_argument("--dropout", type=float, default=0.2)
    args = parser.parse_args()
    return args

def compute_expe_name_and_save_path(params):
    save_path = params['save_path'] + params["trial_id"]
    if params["use_brb_vae"]:
        save_path += '_usebrb'
    save_path += f'_lr{params["lr"]}'
    save_path += f'_bs{params["batch_size"]}'
    save_path += f'_bmusic{params["beta_music"]}'
    save_path += f'_bswd{params["beta_swd"]}'
    save_path += f'_bclassif{params["beta_classif"]}'
    save_path += f'_bvae{params["beta_vae_loss"]}'
    save_path += f'_bvaekld{params["beta_vae"]}'
    save_path += f'_lat{params["latent_dim"]}'
    save_path += f'_hd{params["n_hidden"]}x{params["hidden_dim"]}'
    save_path += f'_drop{params["dropout"]}'
    save_path += f'_decay{params["decay_step"]}'
    save_path += f'_layertype{params["layer_type"]}'
    number_added = False
    counter = 1
    while os.path.exists(save_path):
        if number_added:
            save_path = '_'.join(save_path.split('_')[:-1]) + f'_{counter}'
            counter += 1
        else:
            save_path += f'_{counter}'
    params["save_path"] = save_path + '/'
    os.makedirs(save_path)
    print(f'logging to {save_path}')
    return params

if __name__ == '__main__':
    keys_to_track = ['steps', 'global_losses', 'vae_losses', 'mse_losses_cocktail', 'mse_losses_music', 'kld_losses_cocktail',
                     'kld_losses_music', 'swd_losses', 'classif_losses_cocktail', 'classif_losses_music', 'classif_acc_cocktail', 'classif_acc_music',
                     'brb_kld_loss_cocktail', 'brb_kld_loss_music', 'brb_mse_loss_music', 'brb_mse_loss_cocktail', 'brb_mse_latent_loss', 'brb_vae_loss', 'beta_reg_grounding',
                     'bubble_mse', 'egg_mse']

    keys_to_print = ['steps', 'global_losses', 'vae_losses', 'mse_losses_cocktail', 'mse_losses_music', 'kld_losses_cocktail',
                     'kld_losses_music', 'swd_losses', 'classif_losses_cocktail', 'classif_losses_music', 'classif_acc_cocktail', 'classif_acc_music', 'beta_reg_grounding']
    #TODO: first phase vae pretraining for music
    # then in second phase: vae cocktail and music, brb vaes
    args = parse_args()
    params = dict(nb_classes=None,
                  save_every=0,  #epochs
                  log_every=0,  #32*500,
                  plot_every=10, # in epochs
                  keys_to_track=keys_to_track,
                  keys_to_print=keys_to_print,)
    params.update(vars(args))

    params['train_epoch_size'] = params['batch_size'] * 100
    params['test_epoch_size'] = params['batch_size'] * 10
    params['pretrain_train_epoch_size'] = params['pretrain_batch_size'] * 100
    params['pretrain_test_epoch_size'] = params['pretrain_batch_size'] * 10
    params['epochs'] = params['n_epochs_music_pretrain'] + params['n_epochs_train'] + params['n_epochs_classif_finetune']
    run_training(params)