Spaces:
Runtime error
Runtime error
File size: 23,447 Bytes
e775f6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 |
import torch; torch.manual_seed(0)
import torch.utils
from torch.utils.data import DataLoader
import torch.distributions
import torch.nn as nn
import matplotlib.pyplot as plt; plt.rcParams['figure.dpi'] = 200
from src.cocktails.representation_learning.dataset import MyDataset, get_representation_from_ingredient, get_max_n_ingredients
import json
import pandas as pd
import numpy as np
import os
from src.cocktails.representation_learning.multihead_model import get_multihead_model
from src.cocktails.config import COCKTAILS_CSV_DATA, FULL_COCKTAIL_REP_PATH, EXPERIMENT_PATH
from src.cocktails.utilities.cocktail_utilities import get_bunch_of_rep_keys
from src.cocktails.utilities.ingredients_utilities import ingredient_profiles
from resource import getrusage
from resource import RUSAGE_SELF
import gc
gc.collect(2)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
def get_params():
data = pd.read_csv(COCKTAILS_CSV_DATA)
max_ingredients, ingredient_set, liquor_set, liqueur_set = get_max_n_ingredients(data)
num_ingredients = len(ingredient_set)
rep_keys = get_bunch_of_rep_keys()['custom']
ing_keys = [k.split(' ')[1] for k in rep_keys]
ing_keys.remove('volume')
nb_ing_categories = len(set(ingredient_profiles['type']))
category_encodings = dict(zip(sorted(set(ingredient_profiles['type'])), np.eye(nb_ing_categories)))
params = dict(trial_id='test',
save_path=EXPERIMENT_PATH + "/multihead_model/",
nb_epochs=500,
print_every=50,
plot_every=50,
batch_size=128,
lr=0.001,
dropout=0.,
nb_epoch_switch_beta=600,
latent_dim=10,
beta_vae=0.2,
ing_keys=ing_keys,
nb_ingredients=len(ingredient_set),
hidden_dims_ingredients=[128],
hidden_dims_cocktail=[64],
hidden_dims_decoder=[32],
agg='mean',
activation='relu',
auxiliaries_dict=dict(categories=dict(weight=5, type='classif', final_activ=None, dim_output=len(set(data['subcategory']))), #0.5
glasses=dict(weight=0.5, type='classif', final_activ=None, dim_output=len(set(data['glass']))), #0.1
prep_type=dict(weight=0.1, type='classif', final_activ=None, dim_output=len(set(data['category']))),#1
cocktail_reps=dict(weight=1, type='regression', final_activ=None, dim_output=13),#1
volume=dict(weight=1, type='regression', final_activ='relu', dim_output=1),#1
taste_reps=dict(weight=1, type='regression', final_activ='relu', dim_output=2),#1
ingredients_presence=dict(weight=0, type='multiclassif', final_activ=None, dim_output=num_ingredients),#10
ingredients_quantities=dict(weight=0, type='regression', final_activ=None, dim_output=num_ingredients)),
category_encodings=category_encodings
)
water_rep, indexes_to_normalize = get_representation_from_ingredient(ingredients=['water'], quantities=[1],
max_q_per_ing=dict(zip(ingredient_set, [1] * num_ingredients)), index=0,
params=params)
dim_rep_ingredient = water_rep.size
params['indexes_ing_to_normalize'] = indexes_to_normalize
params['deepset_latent_dim'] = dim_rep_ingredient * max_ingredients
params['dim_rep_ingredient'] = dim_rep_ingredient
params['input_dim'] = params['nb_ingredients']
params = compute_expe_name_and_save_path(params)
del params['category_encodings'] # to dump
with open(params['save_path'] + 'params.json', 'w') as f:
json.dump(params, f)
params = complete_params(params)
return params
def complete_params(params):
data = pd.read_csv(COCKTAILS_CSV_DATA)
cocktail_reps = np.loadtxt(FULL_COCKTAIL_REP_PATH)
nb_ing_categories = len(set(ingredient_profiles['type']))
category_encodings = dict(zip(sorted(set(ingredient_profiles['type'])), np.eye(nb_ing_categories)))
params['cocktail_reps'] = cocktail_reps
params['raw_data'] = data
params['category_encodings'] = category_encodings
return params
def compute_losses_and_accuracies(loss_functions, auxiliaries, auxiliaries_str, outputs, data):
losses = dict()
accuracies = dict()
other_metrics = dict()
for i_k, k in enumerate(auxiliaries_str):
# get ground truth
# compute loss
if k == 'volume':
outputs[i_k] = outputs[i_k].flatten()
ground_truth = auxiliaries[k]
if ground_truth.dtype == torch.float64:
losses[k] = loss_functions[k](outputs[i_k], ground_truth.float()).float()
elif ground_truth.dtype == torch.int64:
if str(loss_functions[k]) != "BCEWithLogitsLoss()":
losses[k] = loss_functions[k](outputs[i_k].float(), ground_truth.long()).float()
else:
losses[k] = loss_functions[k](outputs[i_k].float(), ground_truth.float()).float()
else:
losses[k] = loss_functions[k](outputs[i_k], ground_truth).float()
# compute accuracies
if str(loss_functions[k]) == 'CrossEntropyLoss()':
bs, n_options = outputs[i_k].shape
predicted = outputs[i_k].argmax(dim=1).detach().numpy()
true = ground_truth.int().detach().numpy()
confusion_matrix = np.zeros([n_options, n_options])
for i in range(bs):
confusion_matrix[true[i], predicted[i]] += 1
acc = confusion_matrix.diagonal().sum() / bs
for i in range(n_options):
if confusion_matrix[i].sum() != 0:
confusion_matrix[i] /= confusion_matrix[i].sum()
other_metrics[k + '_confusion'] = confusion_matrix
accuracies[k] = np.mean(outputs[i_k].argmax(dim=1).detach().numpy() == ground_truth.int().detach().numpy())
assert (acc - accuracies[k]) < 1e-5
elif str(loss_functions[k]) == 'BCEWithLogitsLoss()':
assert k == 'ingredients_presence'
outputs_rescaled = outputs[i_k].detach().numpy() * data.dataset.std_ing_quantities + data.dataset.mean_ing_quantities
predicted_presence = (outputs_rescaled > 0).astype(bool)
presence = ground_truth.detach().numpy().astype(bool)
other_metrics[k + '_false_positive'] = np.mean(np.logical_and(predicted_presence.astype(bool), ~presence.astype(bool)))
other_metrics[k + '_false_negative'] = np.mean(np.logical_and(~predicted_presence.astype(bool), presence.astype(bool)))
accuracies[k] = np.mean(predicted_presence == presence) # accuracy for multi class labeling
elif str(loss_functions[k]) == 'MSELoss()':
accuracies[k] = np.nan
else:
raise ValueError
return losses, accuracies, other_metrics
def compute_metric_output(aux_other_metrics, data, ingredient_quantities, x_hat):
ing_q = ingredient_quantities.detach().numpy()# * data.dataset.std_ing_quantities + data.dataset.mean_ing_quantities
ing_presence = (ing_q > 0)
x_hat = x_hat.detach().numpy()
# x_hat = x_hat.detach().numpy() * data.dataset.std_ing_quantities + data.dataset.mean_ing_quantities
abs_diff = np.abs(ing_q - x_hat) * data.dataset.max_ing_quantities
# abs_diff = np.abs(ing_q - x_hat)
ing_q_abs_loss_when_present, ing_q_abs_loss_when_absent = [], []
for i in range(ingredient_quantities.shape[0]):
ing_q_abs_loss_when_present.append(np.mean(abs_diff[i, np.where(ing_presence[i])]))
ing_q_abs_loss_when_absent.append(np.mean(abs_diff[i, np.where(~ing_presence[i])]))
aux_other_metrics['ing_q_abs_loss_when_present'] = np.mean(ing_q_abs_loss_when_present)
aux_other_metrics['ing_q_abs_loss_when_absent'] = np.mean(ing_q_abs_loss_when_absent)
return aux_other_metrics
def run_epoch(opt, train, model, data, loss_functions, weights, params):
if train:
model.train()
else:
model.eval()
# prepare logging of losses
losses = dict(kld_loss=[],
mse_loss=[],
vae_loss=[],
volume_loss=[],
global_loss=[])
accuracies = dict()
other_metrics = dict()
for aux in params['auxiliaries_dict'].keys():
losses[aux] = []
accuracies[aux] = []
if train: opt.zero_grad()
for d in data:
nb_ingredients = d[0]
batch_size = nb_ingredients.shape[0]
x_ingredients = d[1].float()
ingredient_quantities = d[2]
cocktail_reps = d[3]
auxiliaries = d[4]
for k in auxiliaries.keys():
if auxiliaries[k].dtype == torch.float64: auxiliaries[k] = auxiliaries[k].float()
taste_valid = d[-1]
z, outputs, auxiliaries_str = model.forward(ingredient_quantities.float())
# get auxiliary losses and accuracies
aux_losses, aux_accuracies, aux_other_metrics = compute_losses_and_accuracies(loss_functions, auxiliaries, auxiliaries_str, outputs, data)
# compute vae loss
aux_other_metrics = compute_metric_output(aux_other_metrics, data, ingredient_quantities, outputs[auxiliaries_str.index('ingredients_quantities')])
indexes_taste_valid = np.argwhere(taste_valid.detach().numpy()).flatten()
if indexes_taste_valid.size > 0:
outputs_taste = model.get_auxiliary(z[indexes_taste_valid], aux_str='taste_reps')
gt = auxiliaries['taste_reps'][indexes_taste_valid]
factor_loss = indexes_taste_valid.size / (0.3 * batch_size)# factor on the loss: if same ratio as actual dataset factor = 1 if there is less data, then the factor decreases, more data, it increases
aux_losses['taste_reps'] = (loss_functions['taste_reps'](outputs_taste, gt) * factor_loss).float()
else:
aux_losses['taste_reps'] = torch.FloatTensor([0]).reshape([])
aux_accuracies['taste_reps'] = 0
# aggregate losses
global_loss = torch.sum(torch.cat([torch.atleast_1d(aux_losses[k] * weights[k]) for k in params['auxiliaries_dict'].keys()]))
# for k in params['auxiliaries_dict'].keys():
# global_loss += aux_losses[k] * weights[k]
if train:
global_loss.backward()
opt.step()
opt.zero_grad()
# logging
losses['global_loss'].append(float(global_loss))
for k in params['auxiliaries_dict'].keys():
losses[k].append(float(aux_losses[k]))
accuracies[k].append(float(aux_accuracies[k]))
for k in aux_other_metrics.keys():
if k not in other_metrics.keys():
other_metrics[k] = [aux_other_metrics[k]]
else:
other_metrics[k].append(aux_other_metrics[k])
for k in losses.keys():
losses[k] = np.mean(losses[k])
for k in accuracies.keys():
accuracies[k] = np.mean(accuracies[k])
for k in other_metrics.keys():
other_metrics[k] = np.mean(other_metrics[k], axis=0)
return model, losses, accuracies, other_metrics
def prepare_data_and_loss(params):
train_data = MyDataset(split='train', params=params)
test_data = MyDataset(split='test', params=params)
train_data_loader = DataLoader(train_data, batch_size=params['batch_size'], shuffle=True)
test_data_loader = DataLoader(test_data, batch_size=params['batch_size'], shuffle=True)
loss_functions = dict()
weights = dict()
for k in sorted(params['auxiliaries_dict'].keys()):
if params['auxiliaries_dict'][k]['type'] == 'classif':
if k == 'glasses':
classif_weights = train_data.glasses_weights
elif k == 'prep_type':
classif_weights = train_data.prep_types_weights
elif k == 'categories':
classif_weights = train_data.categories_weights
else:
raise ValueError
loss_functions[k] = nn.CrossEntropyLoss(torch.FloatTensor(classif_weights))
elif params['auxiliaries_dict'][k]['type'] == 'multiclassif':
loss_functions[k] = nn.BCEWithLogitsLoss()
elif params['auxiliaries_dict'][k]['type'] == 'regression':
loss_functions[k] = nn.MSELoss()
else:
raise ValueError
weights[k] = params['auxiliaries_dict'][k]['weight']
return loss_functions, train_data_loader, test_data_loader, weights
def print_losses(train, losses, accuracies, other_metrics):
keyword = 'Train' if train else 'Eval'
print(f'\t{keyword} logs:')
keys = ['global_loss', 'vae_loss', 'mse_loss', 'kld_loss', 'volume_loss']
for k in keys:
print(f'\t\t{k} - Loss: {losses[k]:.2f}')
for k in sorted(accuracies.keys()):
print(f'\t\t{k} (aux) - Loss: {losses[k]:.2f}, Acc: {accuracies[k]:.2f}')
for k in sorted(other_metrics.keys()):
if 'confusion' not in k:
print(f'\t\t{k} - {other_metrics[k]:.2f}')
def run_experiment(params, verbose=True):
loss_functions, train_data_loader, test_data_loader, weights = prepare_data_and_loss(params)
model_params = [params[k] for k in ["input_dim", "activation", "hidden_dims_cocktail", "latent_dim", "dropout", "auxiliaries_dict", "hidden_dims_decoder"]]
model = get_multihead_model(*model_params)
opt = torch.optim.AdamW(model.parameters(), lr=params['lr'])
all_train_losses = []
all_eval_losses = []
all_train_accuracies = []
all_eval_accuracies = []
all_eval_other_metrics = []
all_train_other_metrics = []
best_loss = np.inf
model, eval_losses, eval_accuracies, eval_other_metrics = run_epoch(opt=opt, train=False, model=model, data=test_data_loader, loss_functions=loss_functions,
weights=weights, params=params)
all_eval_losses.append(eval_losses)
all_eval_accuracies.append(eval_accuracies)
all_eval_other_metrics.append(eval_other_metrics)
if verbose: print(f'\n--------\nEpoch #0')
if verbose: print_losses(train=False, accuracies=eval_accuracies, losses=eval_losses, other_metrics=eval_other_metrics)
for epoch in range(params['nb_epochs']):
if verbose and (epoch + 1) % params['print_every'] == 0: print(f'\n--------\nEpoch #{epoch+1}')
model, train_losses, train_accuracies, train_other_metrics = run_epoch(opt=opt, train=True, model=model, data=train_data_loader, loss_functions=loss_functions,
weights=weights, params=params)
if verbose and (epoch + 1) % params['print_every'] == 0: print_losses(train=True, accuracies=train_accuracies, losses=train_losses, other_metrics=train_other_metrics)
model, eval_losses, eval_accuracies, eval_other_metrics = run_epoch(opt=opt, train=False, model=model, data=test_data_loader, loss_functions=loss_functions,
weights=weights, params=params)
if verbose and (epoch + 1) % params['print_every'] == 0: print_losses(train=False, accuracies=eval_accuracies, losses=eval_losses, other_metrics=eval_other_metrics)
if eval_losses['global_loss'] < best_loss:
best_loss = eval_losses['global_loss']
if verbose: print(f'Saving new best model with loss {best_loss:.2f}')
torch.save(model.state_dict(), params['save_path'] + f'checkpoint_best.save')
# log
all_train_losses.append(train_losses)
all_train_accuracies.append(train_accuracies)
all_eval_losses.append(eval_losses)
all_eval_accuracies.append(eval_accuracies)
all_eval_other_metrics.append(eval_other_metrics)
all_train_other_metrics.append(train_other_metrics)
# if epoch == params['nb_epoch_switch_beta']:
# params['beta_vae'] = 2.5
# params['auxiliaries_dict']['prep_type']['weight'] /= 10
# params['auxiliaries_dict']['glasses']['weight'] /= 10
if (epoch + 1) % params['plot_every'] == 0:
plot_results(all_train_losses, all_train_accuracies, all_train_other_metrics,
all_eval_losses, all_eval_accuracies, all_eval_other_metrics, params['plot_path'], weights)
return model
def plot_results(all_train_losses, all_train_accuracies, all_train_other_metrics,
all_eval_losses, all_eval_accuracies, all_eval_other_metrics, plot_path, weights):
steps = np.arange(len(all_eval_accuracies))
loss_keys = sorted(all_train_losses[0].keys())
acc_keys = sorted(all_train_accuracies[0].keys())
metrics_keys = sorted(all_train_other_metrics[0].keys())
plt.figure()
plt.title('Train losses')
for k in loss_keys:
factor = 1 if k == 'mse_loss' else 1
if k not in weights.keys():
plt.plot(steps[1:], [train_loss[k] * factor for train_loss in all_train_losses], label=k)
else:
if weights[k] != 0:
plt.plot(steps[1:], [train_loss[k] * factor for train_loss in all_train_losses], label=k)
plt.legend()
plt.ylim([0, 4])
plt.savefig(plot_path + 'train_losses.png', dpi=200)
fig = plt.gcf()
plt.close(fig)
plt.figure()
plt.title('Train accuracies')
for k in acc_keys:
if weights[k] != 0:
plt.plot(steps[1:], [train_acc[k] for train_acc in all_train_accuracies], label=k)
plt.legend()
plt.ylim([0, 1])
plt.savefig(plot_path + 'train_acc.png', dpi=200)
fig = plt.gcf()
plt.close(fig)
plt.figure()
plt.title('Train other metrics')
for k in metrics_keys:
if 'confusion' not in k and 'presence' in k:
plt.plot(steps[1:], [train_metric[k] for train_metric in all_train_other_metrics], label=k)
plt.legend()
plt.ylim([0, 1])
plt.savefig(plot_path + 'train_ing_presence_errors.png', dpi=200)
fig = plt.gcf()
plt.close(fig)
plt.figure()
plt.title('Train other metrics')
for k in metrics_keys:
if 'confusion' not in k and 'presence' not in k:
plt.plot(steps[1:], [train_metric[k] for train_metric in all_train_other_metrics], label=k)
plt.legend()
plt.ylim([0, 15])
plt.savefig(plot_path + 'train_ing_q_error.png', dpi=200)
fig = plt.gcf()
plt.close(fig)
plt.figure()
plt.title('Eval losses')
for k in loss_keys:
factor = 1 if k == 'mse_loss' else 1
if k not in weights.keys():
plt.plot(steps, [eval_loss[k] * factor for eval_loss in all_eval_losses], label=k)
else:
if weights[k] != 0:
plt.plot(steps, [eval_loss[k] * factor for eval_loss in all_eval_losses], label=k)
plt.legend()
plt.ylim([0, 4])
plt.savefig(plot_path + 'eval_losses.png', dpi=200)
fig = plt.gcf()
plt.close(fig)
plt.figure()
plt.title('Eval accuracies')
for k in acc_keys:
if weights[k] != 0:
plt.plot(steps, [eval_acc[k] for eval_acc in all_eval_accuracies], label=k)
plt.legend()
plt.ylim([0, 1])
plt.savefig(plot_path + 'eval_acc.png', dpi=200)
fig = plt.gcf()
plt.close(fig)
plt.figure()
plt.title('Eval other metrics')
for k in metrics_keys:
if 'confusion' not in k and 'presence' in k:
plt.plot(steps, [eval_metric[k] for eval_metric in all_eval_other_metrics], label=k)
plt.legend()
plt.ylim([0, 1])
plt.savefig(plot_path + 'eval_ing_presence_errors.png', dpi=200)
fig = plt.gcf()
plt.close(fig)
plt.figure()
plt.title('Eval other metrics')
for k in metrics_keys:
if 'confusion' not in k and 'presence' not in k:
plt.plot(steps, [eval_metric[k] for eval_metric in all_eval_other_metrics], label=k)
plt.legend()
plt.ylim([0, 15])
plt.savefig(plot_path + 'eval_ing_q_error.png', dpi=200)
fig = plt.gcf()
plt.close(fig)
for k in metrics_keys:
if 'confusion' in k:
plt.figure()
plt.title(k)
plt.ylabel('True')
plt.xlabel('Predicted')
plt.imshow(all_eval_other_metrics[-1][k], vmin=0, vmax=1)
plt.colorbar()
plt.savefig(plot_path + f'eval_{k}.png', dpi=200)
fig = plt.gcf()
plt.close(fig)
for k in metrics_keys:
if 'confusion' in k:
plt.figure()
plt.title(k)
plt.ylabel('True')
plt.xlabel('Predicted')
plt.imshow(all_train_other_metrics[-1][k], vmin=0, vmax=1)
plt.colorbar()
plt.savefig(plot_path + f'train_{k}.png', dpi=200)
fig = plt.gcf()
plt.close(fig)
plt.close('all')
def get_model(model_path):
with open(model_path + 'params.json', 'r') as f:
params = json.load(f)
params['save_path'] = model_path
model_chkpt = model_path + "checkpoint_best.save"
model_params = [params[k] for k in ["input_dim", "activation", "hidden_dims_cocktail", "latent_dim", "dropout", "auxiliaries_dict", "hidden_dims_decoder"]]
model = get_multihead_model(*model_params)
model.load_state_dict(torch.load(model_chkpt))
model.eval()
max_ing_quantities = np.loadtxt(model_path + 'max_ing_quantities.txt')
def predict(ing_qs, aux_str):
ing_qs /= max_ing_quantities
input_model = torch.FloatTensor(ing_qs).reshape(1, -1)
_, outputs, auxiliaries_str = model.forward(input_model, )
if isinstance(aux_str, str):
return outputs[auxiliaries_str.index(aux_str)].detach().numpy()
elif isinstance(aux_str, list):
return [outputs[auxiliaries_str.index(aux)].detach().numpy() for aux in aux_str]
else:
raise ValueError
return predict, params
def compute_expe_name_and_save_path(params):
weights_str = '['
for aux in params['auxiliaries_dict'].keys():
weights_str += f'{params["auxiliaries_dict"][aux]["weight"]}, '
weights_str = weights_str[:-2] + ']'
save_path = params['save_path'] + params["trial_id"]
save_path += f'_lr{params["lr"]}'
save_path += f'_betavae{params["beta_vae"]}'
save_path += f'_bs{params["batch_size"]}'
save_path += f'_latentdim{params["latent_dim"]}'
save_path += f'_hding{params["hidden_dims_ingredients"]}'
save_path += f'_hdcocktail{params["hidden_dims_cocktail"]}'
save_path += f'_hddecoder{params["hidden_dims_decoder"]}'
save_path += f'_agg{params["agg"]}'
save_path += f'_activ{params["activation"]}'
save_path += f'_w{weights_str}'
counter = 0
while os.path.exists(save_path + f"_{counter}"):
counter += 1
save_path = save_path + f"_{counter}" + '/'
params["save_path"] = save_path
os.makedirs(save_path)
os.makedirs(save_path + 'plots/')
params['plot_path'] = save_path + 'plots/'
print(f'logging to {save_path}')
return params
if __name__ == '__main__':
params = get_params()
run_experiment(params)
|