File size: 23,447 Bytes
e775f6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
import torch; torch.manual_seed(0)
import torch.utils
from torch.utils.data import DataLoader
import torch.distributions
import torch.nn as nn
import matplotlib.pyplot as plt; plt.rcParams['figure.dpi'] = 200
from src.cocktails.representation_learning.dataset import MyDataset, get_representation_from_ingredient, get_max_n_ingredients
import json
import pandas as pd
import numpy as np
import os
from src.cocktails.representation_learning.multihead_model import get_multihead_model
from src.cocktails.config import COCKTAILS_CSV_DATA, FULL_COCKTAIL_REP_PATH, EXPERIMENT_PATH
from src.cocktails.utilities.cocktail_utilities import get_bunch_of_rep_keys
from src.cocktails.utilities.ingredients_utilities import ingredient_profiles
from resource import getrusage
from resource import RUSAGE_SELF
import gc
gc.collect(2)
device = 'cuda' if torch.cuda.is_available() else 'cpu'

def get_params():
    data = pd.read_csv(COCKTAILS_CSV_DATA)
    max_ingredients, ingredient_set, liquor_set, liqueur_set = get_max_n_ingredients(data)
    num_ingredients = len(ingredient_set)
    rep_keys = get_bunch_of_rep_keys()['custom']
    ing_keys = [k.split(' ')[1] for k in rep_keys]
    ing_keys.remove('volume')
    nb_ing_categories = len(set(ingredient_profiles['type']))
    category_encodings = dict(zip(sorted(set(ingredient_profiles['type'])), np.eye(nb_ing_categories)))

    params = dict(trial_id='test',
                  save_path=EXPERIMENT_PATH + "/multihead_model/",
                  nb_epochs=500,
                  print_every=50,
                  plot_every=50,
                  batch_size=128,
                  lr=0.001,
                  dropout=0.,
                  nb_epoch_switch_beta=600,
                  latent_dim=10,
                  beta_vae=0.2,
                  ing_keys=ing_keys,
                  nb_ingredients=len(ingredient_set),
                  hidden_dims_ingredients=[128],
                  hidden_dims_cocktail=[64],
                  hidden_dims_decoder=[32],
                  agg='mean',
                  activation='relu',
                  auxiliaries_dict=dict(categories=dict(weight=5, type='classif', final_activ=None, dim_output=len(set(data['subcategory']))), #0.5
                                        glasses=dict(weight=0.5, type='classif', final_activ=None, dim_output=len(set(data['glass']))), #0.1
                                        prep_type=dict(weight=0.1, type='classif', final_activ=None, dim_output=len(set(data['category']))),#1
                                        cocktail_reps=dict(weight=1, type='regression', final_activ=None, dim_output=13),#1
                                        volume=dict(weight=1, type='regression', final_activ='relu',  dim_output=1),#1
                                        taste_reps=dict(weight=1, type='regression', final_activ='relu', dim_output=2),#1
                                        ingredients_presence=dict(weight=0, type='multiclassif', final_activ=None, dim_output=num_ingredients),#10
                                        ingredients_quantities=dict(weight=0, type='regression', final_activ=None, dim_output=num_ingredients)),
                  category_encodings=category_encodings
                  )
    water_rep, indexes_to_normalize = get_representation_from_ingredient(ingredients=['water'], quantities=[1],
                                                                         max_q_per_ing=dict(zip(ingredient_set, [1] * num_ingredients)), index=0,
                                                                         params=params)
    dim_rep_ingredient = water_rep.size
    params['indexes_ing_to_normalize'] = indexes_to_normalize
    params['deepset_latent_dim'] = dim_rep_ingredient * max_ingredients
    params['dim_rep_ingredient'] = dim_rep_ingredient
    params['input_dim'] = params['nb_ingredients']
    params = compute_expe_name_and_save_path(params)
    del params['category_encodings']  # to dump
    with open(params['save_path'] + 'params.json', 'w') as f:
        json.dump(params, f)

    params = complete_params(params)
    return params

def complete_params(params):
    data = pd.read_csv(COCKTAILS_CSV_DATA)
    cocktail_reps = np.loadtxt(FULL_COCKTAIL_REP_PATH)
    nb_ing_categories = len(set(ingredient_profiles['type']))
    category_encodings = dict(zip(sorted(set(ingredient_profiles['type'])), np.eye(nb_ing_categories)))
    params['cocktail_reps'] = cocktail_reps
    params['raw_data'] = data
    params['category_encodings'] = category_encodings
    return params

def compute_losses_and_accuracies(loss_functions, auxiliaries, auxiliaries_str, outputs, data):
    losses = dict()
    accuracies = dict()
    other_metrics = dict()
    for i_k, k in enumerate(auxiliaries_str):
        # get ground truth
        # compute loss
        if k == 'volume':
            outputs[i_k] = outputs[i_k].flatten()
        ground_truth = auxiliaries[k]
        if ground_truth.dtype == torch.float64:
            losses[k] = loss_functions[k](outputs[i_k], ground_truth.float()).float()
        elif ground_truth.dtype == torch.int64:
            if str(loss_functions[k]) != "BCEWithLogitsLoss()":
                losses[k] = loss_functions[k](outputs[i_k].float(), ground_truth.long()).float()
            else:
                losses[k] = loss_functions[k](outputs[i_k].float(), ground_truth.float()).float()
        else:
            losses[k] = loss_functions[k](outputs[i_k], ground_truth).float()
        # compute accuracies
        if str(loss_functions[k]) == 'CrossEntropyLoss()':
            bs, n_options = outputs[i_k].shape
            predicted = outputs[i_k].argmax(dim=1).detach().numpy()
            true = ground_truth.int().detach().numpy()
            confusion_matrix = np.zeros([n_options, n_options])
            for i in range(bs):
                confusion_matrix[true[i], predicted[i]] += 1
            acc = confusion_matrix.diagonal().sum() / bs
            for i in range(n_options):
                if confusion_matrix[i].sum() != 0:
                    confusion_matrix[i] /= confusion_matrix[i].sum()
            other_metrics[k + '_confusion'] = confusion_matrix
            accuracies[k] = np.mean(outputs[i_k].argmax(dim=1).detach().numpy() == ground_truth.int().detach().numpy())
            assert (acc - accuracies[k]) < 1e-5

        elif str(loss_functions[k]) == 'BCEWithLogitsLoss()':
            assert k == 'ingredients_presence'
            outputs_rescaled = outputs[i_k].detach().numpy() * data.dataset.std_ing_quantities + data.dataset.mean_ing_quantities
            predicted_presence = (outputs_rescaled > 0).astype(bool)
            presence = ground_truth.detach().numpy().astype(bool)
            other_metrics[k + '_false_positive'] = np.mean(np.logical_and(predicted_presence.astype(bool), ~presence.astype(bool)))
            other_metrics[k + '_false_negative'] = np.mean(np.logical_and(~predicted_presence.astype(bool), presence.astype(bool)))
            accuracies[k] = np.mean(predicted_presence == presence)  # accuracy for multi class labeling
        elif str(loss_functions[k]) == 'MSELoss()':
            accuracies[k] = np.nan
        else:
            raise ValueError
    return losses, accuracies, other_metrics

def compute_metric_output(aux_other_metrics, data, ingredient_quantities, x_hat):
    ing_q = ingredient_quantities.detach().numpy()# * data.dataset.std_ing_quantities + data.dataset.mean_ing_quantities
    ing_presence = (ing_q > 0)
    x_hat = x_hat.detach().numpy()
    # x_hat = x_hat.detach().numpy() * data.dataset.std_ing_quantities + data.dataset.mean_ing_quantities
    abs_diff = np.abs(ing_q - x_hat) * data.dataset.max_ing_quantities
    # abs_diff = np.abs(ing_q - x_hat)
    ing_q_abs_loss_when_present, ing_q_abs_loss_when_absent = [], []
    for i in range(ingredient_quantities.shape[0]):
        ing_q_abs_loss_when_present.append(np.mean(abs_diff[i, np.where(ing_presence[i])]))
        ing_q_abs_loss_when_absent.append(np.mean(abs_diff[i, np.where(~ing_presence[i])]))
    aux_other_metrics['ing_q_abs_loss_when_present'] = np.mean(ing_q_abs_loss_when_present)
    aux_other_metrics['ing_q_abs_loss_when_absent'] = np.mean(ing_q_abs_loss_when_absent)
    return aux_other_metrics

def run_epoch(opt, train, model, data, loss_functions, weights, params):
    if train:
        model.train()
    else:
        model.eval()

    # prepare logging of losses
    losses = dict(kld_loss=[],
                  mse_loss=[],
                  vae_loss=[],
                  volume_loss=[],
                  global_loss=[])
    accuracies = dict()
    other_metrics = dict()
    for aux in params['auxiliaries_dict'].keys():
        losses[aux] = []
        accuracies[aux] = []
    if train: opt.zero_grad()

    for d in data:
        nb_ingredients = d[0]
        batch_size = nb_ingredients.shape[0]
        x_ingredients = d[1].float()
        ingredient_quantities = d[2]
        cocktail_reps = d[3]
        auxiliaries = d[4]
        for k in auxiliaries.keys():
            if auxiliaries[k].dtype == torch.float64: auxiliaries[k] = auxiliaries[k].float()
        taste_valid = d[-1]
        z, outputs, auxiliaries_str = model.forward(ingredient_quantities.float())
        # get auxiliary losses and accuracies
        aux_losses, aux_accuracies, aux_other_metrics = compute_losses_and_accuracies(loss_functions, auxiliaries, auxiliaries_str, outputs, data)

        # compute vae loss
        aux_other_metrics = compute_metric_output(aux_other_metrics, data, ingredient_quantities, outputs[auxiliaries_str.index('ingredients_quantities')])

        indexes_taste_valid = np.argwhere(taste_valid.detach().numpy()).flatten()
        if indexes_taste_valid.size > 0:
            outputs_taste = model.get_auxiliary(z[indexes_taste_valid], aux_str='taste_reps')
            gt = auxiliaries['taste_reps'][indexes_taste_valid]
            factor_loss = indexes_taste_valid.size / (0.3 * batch_size)# factor on the loss: if same ratio as actual dataset factor = 1 if there is less data, then the factor decreases, more data, it increases
            aux_losses['taste_reps'] = (loss_functions['taste_reps'](outputs_taste, gt) * factor_loss).float()
        else:
            aux_losses['taste_reps'] = torch.FloatTensor([0]).reshape([])
        aux_accuracies['taste_reps'] = 0

        # aggregate losses
        global_loss = torch.sum(torch.cat([torch.atleast_1d(aux_losses[k] * weights[k]) for k in params['auxiliaries_dict'].keys()]))
        # for k in params['auxiliaries_dict'].keys():
        #     global_loss += aux_losses[k] * weights[k]

        if train:
            global_loss.backward()
            opt.step()
            opt.zero_grad()

        # logging
        losses['global_loss'].append(float(global_loss))
        for k in params['auxiliaries_dict'].keys():
            losses[k].append(float(aux_losses[k]))
            accuracies[k].append(float(aux_accuracies[k]))
        for k in aux_other_metrics.keys():
            if k not in other_metrics.keys():
                other_metrics[k] = [aux_other_metrics[k]]
            else:
                other_metrics[k].append(aux_other_metrics[k])

    for k in losses.keys():
        losses[k] = np.mean(losses[k])
    for k in accuracies.keys():
        accuracies[k] = np.mean(accuracies[k])
    for k in other_metrics.keys():
        other_metrics[k] = np.mean(other_metrics[k], axis=0)
    return model, losses, accuracies, other_metrics

def prepare_data_and_loss(params):
    train_data = MyDataset(split='train', params=params)
    test_data = MyDataset(split='test', params=params)

    train_data_loader = DataLoader(train_data, batch_size=params['batch_size'], shuffle=True)
    test_data_loader = DataLoader(test_data, batch_size=params['batch_size'], shuffle=True)

    loss_functions = dict()
    weights = dict()
    for k in sorted(params['auxiliaries_dict'].keys()):
        if params['auxiliaries_dict'][k]['type'] == 'classif':
            if k == 'glasses':
                classif_weights = train_data.glasses_weights
            elif k == 'prep_type':
                classif_weights = train_data.prep_types_weights
            elif k == 'categories':
                classif_weights = train_data.categories_weights
            else:
                raise ValueError
            loss_functions[k] = nn.CrossEntropyLoss(torch.FloatTensor(classif_weights))
        elif params['auxiliaries_dict'][k]['type'] == 'multiclassif':
            loss_functions[k] = nn.BCEWithLogitsLoss()
        elif params['auxiliaries_dict'][k]['type'] == 'regression':
            loss_functions[k] = nn.MSELoss()
        else:
            raise ValueError
        weights[k] = params['auxiliaries_dict'][k]['weight']


    return loss_functions, train_data_loader, test_data_loader, weights

def print_losses(train, losses, accuracies, other_metrics):
    keyword = 'Train' if train else 'Eval'
    print(f'\t{keyword} logs:')
    keys = ['global_loss', 'vae_loss', 'mse_loss', 'kld_loss', 'volume_loss']
    for k in keys:
        print(f'\t\t{k} - Loss: {losses[k]:.2f}')
    for k in sorted(accuracies.keys()):
        print(f'\t\t{k} (aux) - Loss: {losses[k]:.2f}, Acc: {accuracies[k]:.2f}')
    for k in sorted(other_metrics.keys()):
        if 'confusion' not in k:
            print(f'\t\t{k} - {other_metrics[k]:.2f}')


def run_experiment(params, verbose=True):
    loss_functions, train_data_loader, test_data_loader, weights = prepare_data_and_loss(params)

    model_params = [params[k] for k in ["input_dim", "activation", "hidden_dims_cocktail", "latent_dim", "dropout", "auxiliaries_dict", "hidden_dims_decoder"]]
    model = get_multihead_model(*model_params)
    opt = torch.optim.AdamW(model.parameters(), lr=params['lr'])


    all_train_losses = []
    all_eval_losses = []
    all_train_accuracies = []
    all_eval_accuracies = []
    all_eval_other_metrics = []
    all_train_other_metrics = []
    best_loss = np.inf
    model, eval_losses, eval_accuracies, eval_other_metrics = run_epoch(opt=opt, train=False, model=model, data=test_data_loader, loss_functions=loss_functions,
                                                                        weights=weights, params=params)
    all_eval_losses.append(eval_losses)
    all_eval_accuracies.append(eval_accuracies)
    all_eval_other_metrics.append(eval_other_metrics)
    if verbose: print(f'\n--------\nEpoch #0')
    if verbose: print_losses(train=False, accuracies=eval_accuracies, losses=eval_losses, other_metrics=eval_other_metrics)
    for epoch in range(params['nb_epochs']):
        if verbose and (epoch + 1) % params['print_every'] == 0: print(f'\n--------\nEpoch #{epoch+1}')
        model, train_losses, train_accuracies, train_other_metrics = run_epoch(opt=opt, train=True, model=model, data=train_data_loader, loss_functions=loss_functions,
                                                                            weights=weights, params=params)
        if verbose and (epoch + 1) % params['print_every'] == 0: print_losses(train=True, accuracies=train_accuracies, losses=train_losses, other_metrics=train_other_metrics)
        model, eval_losses, eval_accuracies, eval_other_metrics = run_epoch(opt=opt, train=False, model=model, data=test_data_loader, loss_functions=loss_functions,
                                                                            weights=weights, params=params)
        if verbose and (epoch + 1) % params['print_every'] == 0: print_losses(train=False, accuracies=eval_accuracies, losses=eval_losses, other_metrics=eval_other_metrics)
        if eval_losses['global_loss'] < best_loss:
            best_loss = eval_losses['global_loss']
            if verbose: print(f'Saving new best model with loss {best_loss:.2f}')
            torch.save(model.state_dict(), params['save_path'] + f'checkpoint_best.save')

        # log
        all_train_losses.append(train_losses)
        all_train_accuracies.append(train_accuracies)
        all_eval_losses.append(eval_losses)
        all_eval_accuracies.append(eval_accuracies)
        all_eval_other_metrics.append(eval_other_metrics)
        all_train_other_metrics.append(train_other_metrics)

        # if epoch == params['nb_epoch_switch_beta']:
        #     params['beta_vae'] = 2.5
            # params['auxiliaries_dict']['prep_type']['weight'] /= 10
            # params['auxiliaries_dict']['glasses']['weight'] /= 10

        if (epoch + 1) % params['plot_every'] == 0:

            plot_results(all_train_losses, all_train_accuracies, all_train_other_metrics,
                         all_eval_losses, all_eval_accuracies, all_eval_other_metrics, params['plot_path'], weights)

    return model

def plot_results(all_train_losses, all_train_accuracies, all_train_other_metrics,
                 all_eval_losses, all_eval_accuracies, all_eval_other_metrics, plot_path, weights):

    steps = np.arange(len(all_eval_accuracies))

    loss_keys = sorted(all_train_losses[0].keys())
    acc_keys = sorted(all_train_accuracies[0].keys())
    metrics_keys = sorted(all_train_other_metrics[0].keys())

    plt.figure()
    plt.title('Train losses')
    for k in loss_keys:
        factor = 1 if k == 'mse_loss' else 1
        if k not in weights.keys():
            plt.plot(steps[1:], [train_loss[k] * factor for train_loss in all_train_losses], label=k)
        else:
            if weights[k] != 0:
                plt.plot(steps[1:], [train_loss[k] * factor for train_loss in all_train_losses], label=k)

    plt.legend()
    plt.ylim([0, 4])
    plt.savefig(plot_path + 'train_losses.png', dpi=200)
    fig = plt.gcf()
    plt.close(fig)

    plt.figure()
    plt.title('Train accuracies')
    for k in acc_keys:
        if weights[k] != 0:
            plt.plot(steps[1:], [train_acc[k] for train_acc in all_train_accuracies], label=k)
    plt.legend()
    plt.ylim([0, 1])
    plt.savefig(plot_path + 'train_acc.png', dpi=200)
    fig = plt.gcf()
    plt.close(fig)

    plt.figure()
    plt.title('Train other metrics')
    for k in metrics_keys:
        if 'confusion' not in k and 'presence' in k:
            plt.plot(steps[1:], [train_metric[k] for train_metric in all_train_other_metrics], label=k)
    plt.legend()
    plt.ylim([0, 1])
    plt.savefig(plot_path + 'train_ing_presence_errors.png', dpi=200)
    fig = plt.gcf()
    plt.close(fig)

    plt.figure()
    plt.title('Train other metrics')
    for k in metrics_keys:
        if 'confusion' not in k and 'presence' not in k:
            plt.plot(steps[1:], [train_metric[k] for train_metric in all_train_other_metrics], label=k)
    plt.legend()
    plt.ylim([0, 15])
    plt.savefig(plot_path + 'train_ing_q_error.png', dpi=200)
    fig = plt.gcf()
    plt.close(fig)

    plt.figure()
    plt.title('Eval losses')
    for k in loss_keys:
        factor = 1 if k == 'mse_loss' else 1
        if k not in weights.keys():
            plt.plot(steps, [eval_loss[k] * factor for eval_loss in all_eval_losses], label=k)
        else:
            if weights[k] != 0:
                plt.plot(steps, [eval_loss[k] * factor for eval_loss in all_eval_losses], label=k)
    plt.legend()
    plt.ylim([0, 4])
    plt.savefig(plot_path + 'eval_losses.png', dpi=200)
    fig = plt.gcf()
    plt.close(fig)

    plt.figure()
    plt.title('Eval accuracies')
    for k in acc_keys:
        if weights[k] != 0:
            plt.plot(steps, [eval_acc[k] for eval_acc in all_eval_accuracies], label=k)
    plt.legend()
    plt.ylim([0, 1])
    plt.savefig(plot_path + 'eval_acc.png', dpi=200)
    fig = plt.gcf()
    plt.close(fig)

    plt.figure()
    plt.title('Eval other metrics')
    for k in metrics_keys:
        if 'confusion' not in k and 'presence' in k:
            plt.plot(steps, [eval_metric[k] for eval_metric in all_eval_other_metrics], label=k)
    plt.legend()
    plt.ylim([0, 1])
    plt.savefig(plot_path + 'eval_ing_presence_errors.png', dpi=200)
    fig = plt.gcf()
    plt.close(fig)

    plt.figure()
    plt.title('Eval other metrics')
    for k in metrics_keys:
        if 'confusion' not in k and 'presence' not in k:
            plt.plot(steps, [eval_metric[k] for eval_metric in all_eval_other_metrics], label=k)
    plt.legend()
    plt.ylim([0, 15])
    plt.savefig(plot_path + 'eval_ing_q_error.png', dpi=200)
    fig = plt.gcf()
    plt.close(fig)


    for k in metrics_keys:
        if 'confusion' in k:
            plt.figure()
            plt.title(k)
            plt.ylabel('True')
            plt.xlabel('Predicted')
            plt.imshow(all_eval_other_metrics[-1][k], vmin=0, vmax=1)
            plt.colorbar()
            plt.savefig(plot_path + f'eval_{k}.png', dpi=200)
            fig = plt.gcf()
            plt.close(fig)

    for k in metrics_keys:
        if 'confusion' in k:
            plt.figure()
            plt.title(k)
            plt.ylabel('True')
            plt.xlabel('Predicted')
            plt.imshow(all_train_other_metrics[-1][k], vmin=0, vmax=1)
            plt.colorbar()
            plt.savefig(plot_path + f'train_{k}.png', dpi=200)
            fig = plt.gcf()
            plt.close(fig)

    plt.close('all')


def get_model(model_path):

    with open(model_path + 'params.json', 'r') as f:
        params = json.load(f)
    params['save_path'] = model_path
    model_chkpt = model_path + "checkpoint_best.save"
    model_params = [params[k] for k in ["input_dim", "activation", "hidden_dims_cocktail", "latent_dim", "dropout", "auxiliaries_dict", "hidden_dims_decoder"]]
    model = get_multihead_model(*model_params)
    model.load_state_dict(torch.load(model_chkpt))
    model.eval()
    max_ing_quantities = np.loadtxt(model_path + 'max_ing_quantities.txt')
    def predict(ing_qs, aux_str):
        ing_qs /= max_ing_quantities
        input_model = torch.FloatTensor(ing_qs).reshape(1, -1)
        _, outputs, auxiliaries_str = model.forward(input_model, )
        if isinstance(aux_str, str):
            return outputs[auxiliaries_str.index(aux_str)].detach().numpy()
        elif isinstance(aux_str, list):
            return [outputs[auxiliaries_str.index(aux)].detach().numpy() for aux in aux_str]
        else:
            raise ValueError
    return predict, params


def compute_expe_name_and_save_path(params):
    weights_str = '['
    for aux in params['auxiliaries_dict'].keys():
        weights_str += f'{params["auxiliaries_dict"][aux]["weight"]}, '
    weights_str = weights_str[:-2] + ']'
    save_path = params['save_path'] + params["trial_id"]
    save_path += f'_lr{params["lr"]}'
    save_path += f'_betavae{params["beta_vae"]}'
    save_path += f'_bs{params["batch_size"]}'
    save_path += f'_latentdim{params["latent_dim"]}'
    save_path += f'_hding{params["hidden_dims_ingredients"]}'
    save_path += f'_hdcocktail{params["hidden_dims_cocktail"]}'
    save_path += f'_hddecoder{params["hidden_dims_decoder"]}'
    save_path += f'_agg{params["agg"]}'
    save_path += f'_activ{params["activation"]}'
    save_path += f'_w{weights_str}'
    counter = 0
    while os.path.exists(save_path + f"_{counter}"):
        counter += 1
    save_path = save_path + f"_{counter}" + '/'
    params["save_path"] = save_path
    os.makedirs(save_path)
    os.makedirs(save_path + 'plots/')
    params['plot_path'] = save_path + 'plots/'
    print(f'logging to {save_path}')
    return params



if __name__ == '__main__':
    params = get_params()
    run_experiment(params)