File size: 5,144 Bytes
f63b5a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 30,
"id": "b52e9a66-a8e9-4f56-91fd-8564b5b636fc",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"जीरो एक दो तीन चार पांच छह सात आठ नौ दस जीरो एक दो तीन चार पांच\n"
]
}
],
"source": [
"# import nbimporter\n",
"import nbimporter\n",
"from Text2List import text_to_list\n",
"def convert_to_list(text, text_list):\n",
" matched_words = []\n",
" unmatched_text = '' # To accumulate unmatched characters\n",
"\n",
" # Sort text_list by length in descending order to prioritize longest matches first\n",
" text_list_sorted = sorted(text_list, key=len, reverse=True)\n",
"\n",
" while text:\n",
" matched = False\n",
" for word in text_list_sorted:\n",
" if text.startswith(word):\n",
" # Add any accumulated unmatched text before appending the matched word\n",
" if unmatched_text:\n",
" matched_words.append(unmatched_text)\n",
" unmatched_text = '' # Reset unmatched text accumulator\n",
"\n",
" matched_words.append(word)\n",
" text = text[len(word):] # Remove the matched part from text\n",
" matched = True\n",
" break\n",
"\n",
" if not matched:\n",
" # Accumulate unmatched characters\n",
" unmatched_text += text[0]\n",
" text = text[1:]\n",
"\n",
" # If there's any remaining unmatched text, add it to the result\n",
" if unmatched_text:\n",
" matched_words.append(unmatched_text)\n",
"\n",
" # Join matched words and unmatched text with a space\n",
" result = ' '.join(matched_words)\n",
" return result\n",
" \n",
"text = \"जीरोएकदोतीनचारपांचछहसातआठनौदसजीरोएकदोतीनचारपांच\"\n",
"\n",
"if __name__==\"__main__\":\n",
" converted=convert_to_list(text, text_to_list())\n",
" print(converted)"
]
},
{
"cell_type": "code",
"execution_count": 33,
"id": "f6655a7c-7481-4a73-a2e6-5327f589bb8b",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"जीरो तीन तीन चार र\n"
]
}
],
"source": [
"# # import nbimporter\n",
"# import nbimporter\n",
"# from Text2List import text_to_list\n",
"# def convert_to_list(text, text_list):\n",
"# matched_words = []\n",
"# unmatched_text = '' # To accumulate unmatched characters\n",
"\n",
"# # Sort text_list by length in descending order to prioritize longest matches first\n",
"# text_list_sorted = sorted(text_list, key=len, reverse=True)\n",
"\n",
"# while text:\n",
"# matched = False\n",
"# for word in text_list_sorted:\n",
"# if word in text:\n",
"# # Add any accumulated unmatched text before appending the matched word\n",
"# if unmatched_text:\n",
"# matched_words.append(unmatched_text)\n",
"# unmatched_text = '' # Reset unmatched text accumulator\n",
"\n",
"# matched_words.append(word)\n",
"# text = text[len(word):] # Remove the matched part from text\n",
"# matched = True\n",
"# break\n",
"\n",
"# if not matched:\n",
"# # Accumulate unmatched characters\n",
"# unmatched_text += text[0]\n",
"# text = text[1:]\n",
"\n",
"# # If there's any remaining unmatched text, add it to the result\n",
"# if unmatched_text:\n",
"# matched_words.append(unmatched_text)\n",
"\n",
"# # Join matched words and unmatched text with a space\n",
"# result = ' '.join(matched_words)\n",
"# return result\n",
" \n",
"# text = \"जीरोएकदोतीनचार\"\n",
"\n",
"# if __name__==\"__main__\":\n",
"# converted=convert_to_list(text, text_to_list())\n",
"# print(converted)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "26b725cd-d14f-4d8a-9829-99a7b9a5eeb3",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|