File size: 5,885 Bytes
4449a5f b696b12 4449a5f b696b12 cdb90d1 b696b12 4449a5f 642ae59 b696b12 4449a5f b696b12 4449a5f b696b12 4449a5f 39e6972 ed68cbd 39e6972 642ae59 39e6972 9d7dce1 6899aff f0dfb53 6899aff f0dfb53 2772053 f0dfb53 642ae59 f0dfb53 6899aff 102c007 6899aff bcc223d 6899aff bcc223d 6899aff e2d73c6 6899aff e2d73c6 6899aff 642ae59 bcc223d 6899aff e1aa123 6899aff e1aa123 6899aff bcc223d e1aa123 6899aff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
import warnings
warnings.filterwarnings("ignore")
import os
import re
import librosa
import webrtcvad
import nbimporter
import torchaudio
import numpy as np
import gradio as gr
import scipy.signal
import soundfile as sf
from transformers import pipeline
from transformers import AutoProcessor
from pyctcdecode import build_ctcdecoder
from transformers import Wav2Vec2ProcessorWithLM
from text2int import text_to_int
from isNumber import is_number
from Text2List import text_to_list
from convert2list import convert_to_list
from processDoubles import process_doubles
from replaceWords import replace_words
from applyVad import apply_vad
from wienerFilter import wiener_filter
from highPassFilter import high_pass_filter
transcriber_hindi_new = pipeline(task="automatic-speech-recognition", model="cdactvm/w2v-bert-2.0-hindi_new")
transcriber_hindi_old = pipeline(task="automatic-speech-recognition", model="cdactvm/huggingface-hindi_model")
processor = AutoProcessor.from_pretrained("cdactvm/w2v-bert-2.0-hindi_new")
vocab_dict = processor.tokenizer.get_vocab()
sorted_vocab_dict = {k.lower(): v for k, v in sorted(vocab_dict.items(), key=lambda item: item[1])}
decoder = build_ctcdecoder(
labels=list(sorted_vocab_dict.keys()),
kenlm_model_path="lm.binary",
)
processor_with_lm = Wav2Vec2ProcessorWithLM(
feature_extractor=processor.feature_extractor,
tokenizer=processor.tokenizer,
decoder=decoder
)
processor.feature_extractor._processor_class = "Wav2Vec2ProcessorWithLM"
transcriber_hindi_lm = pipeline("automatic-speech-recognition", model="cdactvm/w2v-bert-2.0-hindi_new", tokenizer=processor_with_lm, feature_extractor=processor_with_lm.feature_extractor, decoder=processor_with_lm.decoder)
def transcribe_hindi_new(audio):
# # Process the audio file
transcript = transcriber_hindi_new(audio)
text_value = transcript['text']
processd_doubles=process_doubles(text_value)
replaced_words = replace_words(processd_doubles)
converted_text=text_to_int(replaced_words)
return converted_text
def transcribe_hindi_lm(audio):
# # Process the audio file
transcript = transcriber_hindi_lm(audio)
text_value = transcript['text']
processd_doubles=process_doubles(text_value)
replaced_words = replace_words(processd_doubles)
converted_text=text_to_int(replaced_words)
return converted_text
def transcribe_hindi_old(audio):
# # Process the audio file
transcript = transcriber_hindi_old(audio)
text_value = transcript['text']
cleaned_text=text_value.replace("<s>","")
processd_doubles=process_doubles(cleaned_text)
replaced_words = replace_words(processd_doubles)
converted_text=text_to_int(replaced_words)
return converted_text
## implementation of noise reduction techniques.
###############################################
def noise_reduction_pipeline(filepath):
# Your existing noise reduction code
audio, sr = librosa.load(filepath, sr=None)
audio_hp = high_pass_filter(audio, sr, cutoff=100, order=5)
audio_wiener = wiener_filter(audio_hp)
audio_vad = apply_vad(audio_wiener, sr)
output_filepath = "processed_output.wav"
sf.write(output_filepath, audio_vad, sr)
return output_filepath
# Hugging Face ASR function uses the pre-loaded model
def transcribe_with_huggingface(filepath):
result = transcriber_hindi_lm(filepath)
text_value = result['text']
cleaned_text = text_value.replace("<s>", "")
converted_to_list = convert_to_list(cleaned_text, text_to_list())
processed_doubles = process_doubles(converted_to_list)
replaced_words = replace_words(processed_doubles)
converted_text = text_to_int(replaced_words)
print("Transcription: ", converted_text)
return converted_text
# Combined function to process and transcribe audio
def process_audio_and_transcribe(audio):
# Step 1: Preprocess (Noise Reduction)
try:
processed_filepath = noise_reduction_pipeline(audio)
except webrtcvad.Error as e:
return f"Error in processing audio for VAD: {str(e)}"
# Step 2: Transcription
try:
transcription = transcribe_with_huggingface(processed_filepath)
except Exception as e:
return f"Transcription failed: {str(e)}"
return transcription
#################################################
def sel_lng(lng, mic=None, file=None):
if mic is not None:
audio = mic
elif file is not None:
audio = file
else:
return "You must either provide a mic recording or a file"
if lng == "model_1":
return transcribe_hindi_old(audio)
elif lng == "model_2":
return transcribe_hindi_new(audio)
elif lng== "model_3":
return transcribe_hindi_lm(audio)
elif lng== "model_4":
return process_audio_and_transcribe(audio)
# demo=gr.Interface(
# transcribe,
# inputs=[
# gr.Audio(sources=["microphone","upload"], type="filepath"),
# ],
# outputs=[
# "textbox"
# ],
# title="Automatic Speech Recognition",
# description = "Demo for Automatic Speech Recognition. Use microphone to record speech. Please press Record button. Initially it will take some time to load the model. The recognized text will appear in the output textbox",
# ).launch()
demo=gr.Interface(
fn=sel_lng,
inputs=[
gr.Dropdown([
"model_1","model_2","model_3","model_4"],label="Select Model"),
gr.Audio(sources=["microphone","upload"], type="filepath"),
],
outputs=[
"textbox"
],
title="Automatic Speech Recognition",
description = "Demo for Automatic Speech Recognition. Use microphone to record speech. Please press Record button. Initially it will take some time to load the model. The recognized text will appear in the output textbox",
).launch()
|