import pywt | |
import numpy as np | |
# Function to apply wavelet denoising | |
def wavelet_denoise(audio, wavelet='db1', level=1): | |
coeffs = pywt.wavedec(audio, wavelet, mode='per') | |
# Thresholding detail coefficients | |
sigma = np.median(np.abs(coeffs[-level])) / 0.6745 | |
uthresh = sigma * np.sqrt(2 * np.log(len(audio))) | |
coeffs[1:] = [pywt.threshold(i, value=uthresh, mode='soft') for i in coeffs[1:]] | |
return pywt.waverec(coeffs, wavelet, mode='per') | |