import warnings warnings.filterwarnings("ignore") import os import re import librosa import webrtcvad import nbimporter import torchaudio import numpy as np import gradio as gr import scipy.signal import soundfile as sf from transformers import pipeline from transformers import AutoProcessor from pyctcdecode import build_ctcdecoder from transformers import Wav2Vec2ProcessorWithLM from text2int import text_to_int from isNumber import is_number from Text2List import text_to_list from convert2list import convert_to_list from processDoubles import process_doubles from replaceWords import replace_words from applyVad import apply_vad from wienerFilter import wiener_filter from highPassFilter import high_pass_filter transcriber_hindi_new = pipeline(task="automatic-speech-recognition", model="cdactvm/w2v-bert-2.0-hindi_new") transcriber_hindi_old = pipeline(task="automatic-speech-recognition", model="cdactvm/huggingface-hindi_model") processor = AutoProcessor.from_pretrained("cdactvm/w2v-bert-2.0-hindi_new") vocab_dict = processor.tokenizer.get_vocab() sorted_vocab_dict = {k.lower(): v for k, v in sorted(vocab_dict.items(), key=lambda item: item[1])} decoder = build_ctcdecoder( labels=list(sorted_vocab_dict.keys()), kenlm_model_path="lm.binary", ) processor_with_lm = Wav2Vec2ProcessorWithLM( feature_extractor=processor.feature_extractor, tokenizer=processor.tokenizer, decoder=decoder ) processor.feature_extractor._processor_class = "Wav2Vec2ProcessorWithLM" transcriber_hindi_lm = pipeline("automatic-speech-recognition", model="cdactvm/w2v-bert-2.0-hindi_new", tokenizer=processor_with_lm, feature_extractor=processor_with_lm.feature_extractor, decoder=processor_with_lm.decoder) def transcribe_hindi_new(audio): # # Process the audio file transcript = transcriber_hindi_new(audio) text_value = transcript['text'] processd_doubles=process_doubles(text_value) replaced_words = replace_words(processd_doubles) converted_text=text_to_int(replaced_words) return converted_text def transcribe_hindi_lm(audio): # # Process the audio file transcript = transcriber_hindi_lm(audio) text_value = transcript['text'] processd_doubles=process_doubles(text_value) replaced_words = replace_words(processd_doubles) converted_text=text_to_int(replaced_words) return converted_text def transcribe_hindi_old(audio): # # Process the audio file transcript = transcriber_hindi_old(audio) text_value = transcript['text'] cleaned_text=text_value.replace("","") processd_doubles=process_doubles(cleaned_text) replaced_words = replace_words(processd_doubles) converted_text=text_to_int(replaced_words) return converted_text ## implementation of noise reduction techniques. ############################################### def noise_reduction_pipeline(filepath): # Your existing noise reduction code audio, sr = librosa.load(filepath, sr=None) audio_hp = high_pass_filter(audio, sr, cutoff=100, order=5) audio_wiener = wiener_filter(audio_hp) audio_vad = apply_vad(audio_wiener, sr) output_filepath = "processed_output.wav" sf.write(output_filepath, audio_vad, sr) return output_filepath # Hugging Face ASR function uses the pre-loaded model def transcribe_with_huggingface(filepath): result = transcriber_hindi_lm(filepath) text_value = result['text'] cleaned_text = text_value.replace("", "") converted_to_list = convert_to_list(cleaned_text, text_to_list()) processed_doubles = process_doubles(converted_to_list) replaced_words = replace_words(processed_doubles) converted_text = text_to_int(replaced_words) print("Transcription: ", converted_text) return converted_text # Combined function to process and transcribe audio def process_audio_and_transcribe(audio): # Step 1: Preprocess (Noise Reduction) try: processed_filepath = noise_reduction_pipeline(audio) except webrtcvad.Error as e: return f"Error in processing audio for VAD: {str(e)}" # Step 2: Transcription try: transcription = transcribe_with_huggingface(processed_filepath) except Exception as e: return f"Transcription failed: {str(e)}" return transcription ################################################# def sel_lng(lng, mic=None, file=None): if mic is not None: audio = mic elif file is not None: audio = file else: return "You must either provide a mic recording or a file" if lng == "model_1": return transcribe_hindi_old(audio) elif lng == "model_2": return transcribe_hindi_new(audio) elif lng== "model_3": return transcribe_hindi_lm(audio) elif lng== "model_4": return process_audio_and_transcribe(audio) # demo=gr.Interface( # transcribe, # inputs=[ # gr.Audio(sources=["microphone","upload"], type="filepath"), # ], # outputs=[ # "textbox" # ], # title="Automatic Speech Recognition", # description = "Demo for Automatic Speech Recognition. Use microphone to record speech. Please press Record button. Initially it will take some time to load the model. The recognized text will appear in the output textbox", # ).launch() demo=gr.Interface( fn=sel_lng, inputs=[ gr.Dropdown([ "model_1","model_2","model_3","model_4"],label="Select Model"), gr.Audio(sources=["microphone","upload"], type="filepath"), ], outputs=[ "textbox" ], title="Automatic Speech Recognition", description = "Demo for Automatic Speech Recognition. Use microphone to record speech. Please press Record button. Initially it will take some time to load the model. The recognized text will appear in the output textbox", ).launch()