{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "bb78ac37-de4f-407a-8fd5-1a269fd937c9", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.\n" ] } ], "source": [ "# Import necessary libraries and filter warnings\n", "import warnings\n", "warnings.filterwarnings(\"ignore\")\n", "import nbimporter\n", "import os\n", "import re\n", "import numpy as np\n", "import torchaudio\n", "from transformers import pipeline\n", "from text2int import text_to_int\n", "from isNumber import is_number\n", "from Text2List import text_to_list\n", "from convert2list import convert_to_list\n", "from processDoubles import process_doubles\n", "from replaceWords import replace_words\n", "transcriber = pipeline(task=\"automatic-speech-recognition\", model=\"cdactvm/w2v-bert-2.0-hindi_v1\")" ] }, { "cell_type": "code", "execution_count": 2, "id": "02b787e8-6d08-4351-a830-7f7cae7f8243", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Running on local URL: http://127.0.0.1:7860\n", "\n", "To create a public link, set `share=True` in `launch()`.\n" ] }, { "data": { "text/html": [ "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import gradio as gr\n", "\n", "def transcribe(audio):\n", " # # Process the audio file\n", " transcript = transcriber(audio)\n", " text_value = transcript['text']\n", " print(text_value)\n", " processd_doubles=process_doubles(text_value)\n", " converted_to_list=convert_to_list(processd_doubles,text_to_list())\n", " replaced_words = replace_words(converted_to_list)\n", " converted_text=text_to_int(replaced_words)\n", " return converted_text\n", "\n", "\n", "demo = gr.Interface(\n", " transcribe,\n", " gr.Audio(sources=\"microphone\", type=\"filepath\"),\n", " \"text\",\n", ")\n", "\n", "demo.launch()" ] }, { "cell_type": "code", "execution_count": null, "id": "756c0b55-17b4-4aa0-baac-d8f1c4b003df", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.7" } }, "nbformat": 4, "nbformat_minor": 5 }