import warnings warnings.filterwarnings("ignore") import os import re import gradio as gr import numpy as np import torchaudio from transformers import pipeline from transformers import AutoProcessor from pyctcdecode import build_ctcdecoder from transformers import Wav2Vec2ProcessorWithLM from text2int import text_to_int from isNumber import is_number from processDoubles import process_doubles from replaceWords import replace_words transcriber_hindi_new = pipeline(task="automatic-speech-recognition", model="cdactvm/w2v-bert-2.0-hindi_new") transcriber_hindi_old = pipeline(task="automatic-speech-recognition", model="cdactvm/huggingface-hindi_model") processor = AutoProcessor.from_pretrained("cdactvm/w2v-bert-2.0-hindi_new") vocab_dict = processor.tokenizer.get_vocab() sorted_vocab_dict = {k.lower(): v for k, v in sorted(vocab_dict.items(), key=lambda item: item[1])} decoder = build_ctcdecoder( labels=list(sorted_vocab_dict.keys()), kenlm_model_path="lm.binary", ) processor_with_lm = Wav2Vec2ProcessorWithLM( feature_extractor=processor.feature_extractor, tokenizer=processor.tokenizer, decoder=decoder ) processor.feature_extractor._processor_class = "Wav2Vec2ProcessorWithLM" transcriber_hindi_lm = pipeline("automatic-speech-recognition", model="cdactvm/w2v-bert-2.0-hindi_new", tokenizer=processor_with_lm, feature_extractor=processor_with_lm.feature_extractor, decoder=processor_with_lm.decoder) def transcribe_hindi_new(audio): # # Process the audio file transcript = transcriber_hindi_new(audio) text_value = transcript['text'] processd_doubles=process_doubles(text_value) replaced_words = replace_words(processd_doubles) converted_text=text_to_int(replaced_words) return converted_text def transcribe_hindi_lm(audio): # # Process the audio file transcript = transcriber_hindi_lm(audio) text_value = transcript['text'] processd_doubles=process_doubles(text_value) replaced_words = replace_words(processd_doubles) converted_text=text_to_int(replaced_words) return converted_text def transcribe_hindi_old(audio): # # Process the audio file transcript = transcriber_hindi_old(audio) text_value = transcript['text'] cleaned_text=text_value.replace("","") processd_doubles=process_doubles(cleaned_text) replaced_words = replace_words(processd_doubles) converted_text=text_to_int(replaced_words) return converted_text def sel_lng(lng, mic=None, file=None): if mic is not None: audio = mic elif file is not None: audio = file else: return "You must either provide a mic recording or a file" if lng == "model_1": return transcribe_hindi_old(audio) elif lng == "model_2": return transcribe_hindi_new(audio) elif lng== "model_3": return transcribe_hindi_lm(audio) # demo=gr.Interface( # transcribe, # inputs=[ # gr.Audio(sources=["microphone","upload"], type="filepath"), # ], # outputs=[ # "textbox" # ], # title="Automatic Speech Recognition", # description = "Demo for Automatic Speech Recognition. Use microphone to record speech. Please press Record button. Initially it will take some time to load the model. The recognized text will appear in the output textbox", # ).launch() demo=gr.Interface( fn=sel_lng, inputs=[ gr.Dropdown([ "model_1","model_2","model_3"],label="Select Model"), gr.Audio(sources=["microphone","upload"], type="filepath"), ], outputs=[ "textbox" ], title="Automatic Speech Recognition", description = "Demo for Automatic Speech Recognition. Use microphone to record speech. Please press Record button. Initially it will take some time to load the model. The recognized text will appear in the output textbox", ).launch()