Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline | |
import os | |
import re | |
os.system('git clone https://github.com/irshadbhat/indic-trans.git') | |
os.system('pip install ./indic-trans/.') | |
p1= pipeline(task="automatic-speech-recognition", model="cdactvm/w2v-bert-2.0-odia_v1") | |
p2=pipeline(task="automatic-speech-recognition", model="cdactvm/w2v-bert-2.0-hindi_v1") | |
def transcribe_odiya(speech): | |
#print (p1(speech)) | |
text = p1(speech)["text"] | |
#text=cleanhtml(text) | |
return text | |
def transcribe_hindi(speech): | |
#print (p1(speech)) | |
text = p2(speech)["text"] | |
#text=cleanhtml(text) | |
return text | |
def transcribe_odiya_eng(speech): | |
from indictrans import Transliterator | |
trn = Transliterator(source='ori', target='eng', build_lookup=True) | |
text = p1(speech)["text"] | |
text=trn.transform(text) | |
#text = master_function(text) | |
sentence = trn.transform(text) | |
replaced_words = replace_words(sentence) | |
processed_sentence = process_doubles(replaced_words) | |
input_sentence_1 = processed_sentence | |
# Create empty mappings | |
word_to_code_map = {} | |
code_to_word_map = {} | |
# Convert sentence to transcript | |
transcript_1 = sentence_to_transcript(input_sentence_1, word_to_code_map) | |
# Convert transcript to numerical representation | |
numbers = text2int(transcript_1) | |
# Create reverse mapping | |
code_to_word_map = {v: k for k, v in word_to_code_map.items()} | |
# Convert transcript back to sentence | |
text = transcript_to_sentence(numbers, code_to_word_map) | |
return text | |
def transcribe_hin_eng(speech): | |
from indictrans import Transliterator | |
trn = Transliterator(source='hin', target='eng', build_lookup=True) | |
text = p2(speech)["text"] | |
#text=trn.transform(text) | |
#text = master_function(text) | |
sentence = trn.transform(text) | |
replaced_words = replace_words(sentence) | |
processed_sentence = process_doubles(replaced_words) | |
input_sentence_1 = processed_sentence | |
# Create empty mappings | |
word_to_code_map = {} | |
code_to_word_map = {} | |
# Convert sentence to transcript | |
transcript_1 = sentence_to_transcript(input_sentence_1, word_to_code_map) | |
# Convert transcript to numerical representation | |
numbers = text2int(transcript_1) | |
# Create reverse mapping | |
code_to_word_map = {v: k for k, v in word_to_code_map.items()} | |
# Convert transcript back to sentence | |
text = transcript_to_sentence(numbers, code_to_word_map) | |
return text | |
def sel_lng(lng,mic=None, file=None): | |
if mic is not None: | |
audio = mic | |
elif file is not None: | |
audio = file | |
else: | |
return "You must either provide a mic recording or a file" | |
if (lng=="Odiya"): | |
return transcribe_odiya(audio) | |
elif (lng=="Odiya-trans"): | |
return transcribe_odiya_eng(audio) | |
elif (lng=="Hindi-trans"): | |
return transcribe_hin_eng(audio) | |
elif (lng=="Hindi"): | |
return transcribe_hindi(audio) | |
##################################################### | |
def replace_words(sentence): | |
replacements = [ | |
(r'\bjiro\b', 'zero'), (r'\bjero\b', 'zero'), (r'\bnn\b', 'one'), | |
(r'\bn\b', 'one'), (r'\bna\b', 'one'), (r'\btu\b', 'two'), | |
(r'\btoo\b', 'two'), (r'\bthiri\b', 'three'), (r'\bfor\b', 'four'), | |
(r'\bfore\b', 'four'), (r'\bfib\b', 'five'), (r'\bdublseven\b', 'double seven'), | |
(r'\bdubalathri\b', 'double three'), (r'\bnineeit\b', 'nine eight'), | |
(r'\bfipeit\b', 'five eight'), (r'\bdubal\b', 'double'), (r'\bsevenatu\b', 'seven two'), | |
] | |
for pattern, replacement in replacements: | |
sentence = re.sub(pattern, replacement, sentence) | |
return sentence | |
# Function to process "double" followed by a number | |
def process_doubles(sentence): | |
tokens = sentence.split() | |
result = [] | |
i = 0 | |
while i < len(tokens): | |
if tokens[i] in ("double", "dubal"): | |
if i + 1 < len(tokens): | |
result.append(tokens[i + 1]) | |
result.append(tokens[i + 1]) | |
i += 2 | |
else: | |
result.append(tokens[i]) | |
i += 1 | |
else: | |
result.append(tokens[i]) | |
i += 1 | |
return ' '.join(result) | |
# Function to generate Soundex code for a word | |
def soundex(word): | |
word = word.upper() | |
word = ''.join(filter(str.isalpha, word)) | |
if not word: | |
return None | |
soundex_mapping = { | |
'B': '1', 'F': '1', 'P': '1', 'V': '1', | |
'C': '2', 'G': '2', 'J': '2', 'K': '2', 'Q': '2', 'S': '2', 'X': '2', 'Z': '2', | |
'D': '3', 'T': '3', 'L': '4', 'M': '5', 'N': '5', 'R': '6' | |
} | |
soundex_code = word[0] | |
for char in word[1:]: | |
if char not in ('H', 'W'): | |
soundex_code += soundex_mapping.get(char, '0') | |
soundex_code = soundex_code[0] + ''.join(c for i, c in enumerate(soundex_code[1:]) if c != soundex_code[i]) | |
soundex_code = soundex_code.replace('0', '') + '000' | |
return soundex_code[:4] | |
def is_number(x): | |
if type(x) == str: | |
x = x.replace(',', '') | |
try: | |
float(x) | |
except: | |
return False | |
return True | |
# Function to convert text to numerical representation | |
def text2int(textnum, numwords={}): | |
units = ['Z600', 'O500','T000','T600','F600','F100','S220','S150','E300','N500', | |
'T500', 'E415', 'T410', 'T635', 'F635', 'F135', 'S235', 'S153', 'E235','N535'] | |
tens = ['', '', 'T537', 'T637', 'F637', 'F137', 'S230', 'S153', 'E230', 'N530'] | |
scales = ['H536', 'T253', 'M450', 'C600'] | |
ordinal_words = {'oh': 'Z600', 'first': 'O500', 'second': 'T000', 'third': 'T600', 'fourth': 'F600', 'fifth': 'F100', | |
'sixth': 'S200','seventh': 'S150','eighth': 'E230', 'ninth': 'N500', 'twelfth': 'T410'} | |
ordinal_endings = [('ieth', 'y'), ('th', '')] | |
if not numwords: | |
numwords['and'] = (1, 0) | |
for idx, word in enumerate(units): numwords[word] = (1, idx) | |
for idx, word in enumerate(tens): numwords[word] = (1, idx * 10) | |
for idx, word in enumerate(scales): numwords[word] = (10 ** (idx * 3 or 2), 0) | |
textnum = textnum.replace('-', ' ') | |
current = result = 0 | |
curstring = '' | |
onnumber = False | |
lastunit = False | |
lastscale = False | |
def is_numword(x): | |
if is_number(x): | |
return True | |
if word in numwords: | |
return True | |
return False | |
def from_numword(x): | |
if is_number(x): | |
scale = 0 | |
increment = int(x.replace(',', '')) | |
return scale, increment | |
return numwords[x] | |
for word in textnum.split(): | |
if word in ordinal_words: | |
scale, increment = (1, ordinal_words[word]) | |
current = current * scale + increment | |
if scale > 100: | |
result += current | |
current = 0 | |
onnumber = True | |
lastunit = False | |
lastscale = False | |
else: | |
for ending, replacement in ordinal_endings: | |
if word.endswith(ending): | |
word = "%s%s" % (word[:-len(ending)], replacement) | |
if (not is_numword(word)) or (word == 'and' and not lastscale): | |
if onnumber: | |
# Flush the current number we are building | |
curstring += repr(result + current) + " " | |
curstring += word + " " | |
result = current = 0 | |
onnumber = False | |
lastunit = False | |
lastscale = False | |
else: | |
scale, increment = from_numword(word) | |
onnumber = True | |
if lastunit and (word not in scales): | |
# Assume this is part of a string of individual numbers to | |
# be flushed, such as a zipcode "one two three four five" | |
curstring += repr(result + current) | |
result = current = 0 | |
if scale > 1: | |
current = max(1, current) | |
current = current * scale + increment | |
if scale > 100: | |
result += current | |
current = 0 | |
lastscale = False | |
lastunit = False | |
if word in scales: | |
lastscale = True | |
elif word in units: | |
lastunit = True | |
if onnumber: | |
curstring += repr(result + current) | |
return curstring | |
# Convert sentence to transcript using Soundex | |
def sentence_to_transcript(sentence, word_to_code_map): | |
words = sentence.split() | |
transcript_codes = [] | |
for word in words: | |
if word not in word_to_code_map: | |
word_to_code_map[word] = soundex(word) | |
transcript_codes.append(word_to_code_map[word]) | |
transcript = ' '.join(transcript_codes) | |
return transcript | |
# Convert transcript back to sentence using mapping | |
def transcript_to_sentence(transcript, code_to_word_map): | |
codes = transcript.split() | |
sentence_words = [] | |
for code in codes: | |
sentence_words.append(code_to_word_map.get(code, code)) | |
sentence = ' '.join(sentence_words) | |
return sentence | |
###################################################### | |
demo=gr.Interface( | |
fn=sel_lng, | |
inputs=[ | |
gr.Dropdown(["Hindi","Hindi-trans","Odiya","Odiya-trans"],value="Hindi",label="Select Language"), | |
gr.Audio(sources=["microphone","upload"], type="filepath"), | |
#gr.Audio(sources="upload", type="filepath"), | |
#"state" | |
], | |
outputs=[ | |
"textbox" | |
# #"state" | |
], | |
title="Automatic Speech Recognition", | |
description = "Demo for Automatic Speech Recognition. Use microphone to record speech. Please press Record button. Initially it will take some time to load the model. The recognized text will appear in the output textbox", | |
).launch() | |