File size: 8,731 Bytes
9f4c52d
 
 
 
 
 
 
 
 
 
 
 
 
 
867f539
 
 
 
 
 
 
9f4c52d
 
 
867f539
 
 
 
9f4c52d
 
867f539
 
 
9f4c52d
 
867f539
 
 
9f4c52d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
867f539
 
 
 
 
 
 
 
 
9f4c52d
 
 
867f539
9f4c52d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
867f539
9f4c52d
 
 
 
 
 
 
867f539
9f4c52d
867f539
9f4c52d
 
 
 
 
 
 
 
 
 
867f539
 
9f4c52d
 
 
 
 
867f539
 
9f4c52d
247b8a5
867f539
 
 
 
 
 
247b8a5
9f4c52d
 
 
 
 
 
 
 
 
 
 
 
867f539
9f4c52d
59e7fd5
 
9f4c52d
 
 
 
 
 
 
 
 
 
867f539
 
 
9f4c52d
 
867f539
 
 
 
 
 
 
9f4c52d
867f539
9f4c52d
 
867f539
9f4c52d
 
867f539
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f4c52d
 
867f539
9f4c52d
867f539
 
9f4c52d
 
 
867f539
9f4c52d
 
 
 
867f539
 
 
 
 
 
 
 
 
9f4c52d
 
 
 
 
 
 
 
 
 
 
 
 
 
867f539
 
 
 
 
 
 
 
 
 
 
 
 
 
9f4c52d
 
 
867f539
9f4c52d
 
 
867f539
9f4c52d
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import streamlit as st
from streamlit.runtime.uploaded_file_manager import UploadedFile
import pandas as pd
import numpy as np
from pose_format import Pose
from pose_format.pose_visualizer import PoseVisualizer
from pathlib import Path
from pyzstd import decompress
from PIL import Image
import cv2
import mediapipe as mp
import torch

mp_holistic = mp.solutions.holistic
FACEMESH_CONTOURS_POINTS = [
    str(p)
    for p in sorted(
        set([p for p_tup in list(mp_holistic.FACEMESH_CONTOURS) for p in p_tup])
    )
]


def pose_normalization_info(pose_header):
    if pose_header.components[0].name == "POSE_LANDMARKS":
        return pose_header.normalization_info(
            p1=("POSE_LANDMARKS", "RIGHT_SHOULDER"),
            p2=("POSE_LANDMARKS", "LEFT_SHOULDER"),
        )

    if pose_header.components[0].name == "BODY_135":
        return pose_header.normalization_info(
            p1=("BODY_135", "RShoulder"), p2=("BODY_135", "LShoulder")
        )

    if pose_header.components[0].name == "pose_keypoints_2d":
        return pose_header.normalization_info(
            p1=("pose_keypoints_2d", "RShoulder"), p2=("pose_keypoints_2d", "LShoulder")
        )


def pose_hide_legs(pose):
    if pose.header.components[0].name == "POSE_LANDMARKS":
        point_names = ["KNEE", "ANKLE", "HEEL", "FOOT_INDEX"]
        # pylint: disable=protected-access
        points = [
            pose.header._get_point_index("POSE_LANDMARKS", side + "_" + n)
            for n in point_names
            for side in ["LEFT", "RIGHT"]
        ]
        pose.body.confidence[:, :, points] = 0
        pose.body.data[:, :, points, :] = 0
        return pose
    else:
        raise ValueError("Unknown pose header schema for hiding legs")


def preprocess_pose(pose):
    pose = pose.get_components(
        [
            "POSE_LANDMARKS",
            "FACE_LANDMARKS",
            "LEFT_HAND_LANDMARKS",
            "RIGHT_HAND_LANDMARKS",
        ],
        {"FACE_LANDMARKS": FACEMESH_CONTOURS_POINTS},
    )

    pose = pose.normalize(pose_normalization_info(pose.header))
    pose = pose_hide_legs(pose)

    # from sign_vq.data.normalize import pre_process_mediapipe, normalize_mean_std
    # from pose_anonymization.appearance import remove_appearance

    # pose = remove_appearance(pose)
    # pose = pre_process_mediapipe(pose)
    # pose = normalize_mean_std(pose)

    feat = np.nan_to_num(pose.body.data)
    feat = feat.reshape(feat.shape[0], -1)

    pose_frames = torch.from_numpy(np.expand_dims(feat, axis=0)).float()

    return pose_frames


# @st.cache_data(hash_funcs={UploadedFile: lambda p: str(p.name)})
def load_pose(uploaded_file: UploadedFile) -> Pose:

    # with input_path.open("rb") as f_in:
    if uploaded_file.name.endswith(".zst"):
        return Pose.read(decompress(uploaded_file.read()))
    else:
        return Pose.read(uploaded_file.read())


@st.cache_data(hash_funcs={Pose: lambda p: np.array(p.body.data)})
def get_pose_frames(pose: Pose, transparency: bool = False):
    v = PoseVisualizer(pose)
    frames = [frame_data for frame_data in v.draw()]

    if transparency:
        cv_code = v.cv2.COLOR_BGR2RGBA
    else:
        cv_code = v.cv2.COLOR_BGR2RGB
    images = [Image.fromarray(v.cv2.cvtColor(frame, cv_code)) for frame in frames]
    return frames, images


def get_pose_gif(pose: Pose, step: int = 1, fps: int = None):
    if fps is not None:
        pose.body.fps = fps
    v = PoseVisualizer(pose)
    frames = [frame_data for frame_data in v.draw()]
    frames = frames[::step]
    return v.save_gif(None, frames=frames)


st.write("# Pose-format explorer")
st.write(
    "`pose-format` is a toolkit/library for 'handling, manipulation, and visualization of poses'. See [The documentation](https://pose-format.readthedocs.io/en/latest/)"
)
st.write(
    "I made this app to help me visualize and understand the format, including different 'components' and 'points', and what they are named."
)
uploaded_file = st.file_uploader("Upload a .pose file", type=[".pose", ".pose.zst"])


if uploaded_file is not None:
    with st.spinner(f"Loading {uploaded_file.name}"):
        pose = load_pose(uploaded_file)
        frames, images = get_pose_frames(pose=pose)
    st.success("done loading!")
    # st.write(f"pose shape: {pose.body.data.shape}")

    header = pose.header
    st.write("### File Info")
    with st.expander(f"Show full Pose-format header from {uploaded_file.name}"):

        st.write(header)
    with st.expander(f"Show body information from {uploaded_file.name}"):
        st.write(pose.body)
    # st.write(pose.body.data.shape)
    # st.write(pose.body.fps)

    st.write(f"### Selection")

    components = pose.header.components

    component_names = [component.name for component in components]
    chosen_component_names = component_names

    component_selection = st.radio(
        "How to select components?", options=["manual", "signclip"]
    )
    if component_selection == "manual":
        st.write(f"### Component selection: ")
        chosen_component_names = st.pills(
            "Components to visualize",
            options=component_names,
            selection_mode="multi",
            default=component_names,
        )

        # st.write(chosen_component_names)

        st.write("### Point selection:")
        point_names = []
        new_chosen_components = []
        points_dict = {}
        for component in pose.header.components:
            with st.expander(f"points for {component.name}"):

                if component.name in chosen_component_names:

                    st.write(f"#### {component.name}")
                    selected_points = st.multiselect(
                        f"points for component {component.name}:",
                        options=component.points,
                        default=component.points,
                    )
                    if selected_points == component.points:
                        st.write(
                            f"All selected, no need to add a points dict entry for {component.name}"
                        )
                    else:
                        st.write(f"Adding dictionary for {component.name}")
                        points_dict[component.name] = selected_points

        # selected_points = st.multiselect("points to visualize", options=point_names, default=point_names)
        if chosen_component_names:

            if not points_dict:
                points_dict = None
            # else:
            #     st.write(points_dict)
            # st.write(chosen_component_names)

            pose = pose.get_components(chosen_component_names, points=points_dict)
            # st.write(pose.header)

    elif component_selection == "signclip":
        st.write("Selected landmarks used for SignCLIP. (Face countours only)")
        pose = pose.get_components(
            [
                "POSE_LANDMARKS",
                "FACE_LANDMARKS",
                "LEFT_HAND_LANDMARKS",
                "RIGHT_HAND_LANDMARKS",
            ],
            {"FACE_LANDMARKS": FACEMESH_CONTOURS_POINTS},
        )

        # pose = pose.normalize(pose_normalization_info(pose.header)) Visualization goes blank
        pose = pose_hide_legs(pose)
        with st.expander("Show facemesh contour points:"):
            st.write(f"{FACEMESH_CONTOURS_POINTS}")
        with st.expander(f"Show header:"):
            st.write(pose.header)
        # st.write(f"signclip selected, new header:")
        # st.write(pose.body.data.shape)
        # st.write(pose.header)
    else:
        pass

    st.write(f"### Visualization")
    width = st.select_slider(
        "select width of images",
        list(range(1, pose.header.dimensions.width + 1)),
        value=pose.header.dimensions.width / 2,
    )
    step = st.select_slider(
        "Step value to select every nth image", list(range(1, len(frames))), value=1
    )
    fps = st.slider(
        "fps for visualization: ",
        min_value=1.0,
        max_value=pose.body.fps,
        value=pose.body.fps,
    )
    visualize_clicked = st.button(f"Visualize!")

    if visualize_clicked:

        st.write(f"Generating gif...")

        # st.write(pose.body.data.shape)

        st.image(get_pose_gif(pose=pose, step=step, fps=fps))

        with st.expander("See header"):
            st.write(f"### header after filtering:")
            st.write(pose.header)

        # st.write(pose.body.data.shape)

        # st.write(visualize_pose(pose=pose)) # bunch of ndarrays
        # st.write([Image.fromarray(v.cv2.cvtColor(frame, cv_code)) for frame in frames])

        # for i, image in enumerate(images[::n]):
        #     print(f"i={i}")
        #     st.image(image=image, width=width)