File size: 1,903 Bytes
c8f27cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from datasets import load_dataset
from PIL import Image
import os
import pandas as pd
from transformers import AutoFeatureExtractor,AutoModel
from faiss.contrib.inspect_tools import get_flat_data 
import pymde
import numpy as np

def get_embedding(model_name,viz_dat):

    index_file=f"./indexes/{model_name.split('/')[1]}.faiss"
    
    if os.path.exists(index_file):
        viz_dat.load_faiss_index('embeddings', index_file)
    else:
        feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
        model = AutoModel.from_pretrained(model_name)
        # model.to("cuda:0")
        def embed(x):
            images=x["image"]
            inputs = feature_extractor(images=images, return_tensors="pt")
            # inputs.to("cuda:0")
            outputs = model(**inputs,output_hidden_states= True)
            final_emb=outputs.pooler_output.detach().cpu().numpy() # this line depends on the model you are using
            x["embeddings"]=final_emb
            return x
        # Add embeddings to dataset
        viz_dat = viz_dat.map(embed,batched=True,batch_size=20)
        viz_dat.add_faiss_index(column='embeddings')
        viz_dat.save_faiss_index('embeddings',index_file)
        
    embedding_file=f"./indexes/{model_name.split('/')[1]}.npy"   
    if os.path.exists(embedding_file):
        embedding = np.load(embedding_file) # load
    else:    
        index=viz_dat.get_index("embeddings").faiss_index
        embeddings=get_flat_data(index)
        embedding=pymde.preserve_neighbors(embeddings, verbose=True).embed().numpy()
        np.save(embedding_file, embedding) # save
    
    embedding=pd.DataFrame(embedding,columns=["x","y"])
    embedding["image"]=viz_dat["image"]
    embedding["gender"]=viz_dat["gender"]
    embedding["masterCategory"]=viz_dat["masterCategory"]
    embedding["subCategory"]=viz_dat["subCategory"]   
    
    return embedding