|
|
|
import gradio as gr |
|
from langchain import hub |
|
from langchain_chroma import Chroma |
|
from langchain_core.output_parsers import StrOutputParser |
|
from langchain_core.runnables import RunnablePassthrough |
|
from langchain_mistralai import MistralAIEmbeddings |
|
from langchain_community.embeddings import HuggingFaceInstructEmbeddings |
|
from langchain_text_splitters import RecursiveCharacterTextSplitter |
|
from langchain_mistralai import ChatMistralAI |
|
from langchain_community.document_loaders import PyPDFLoader |
|
import requests |
|
from pathlib import Path |
|
from langchain_community.document_loaders import WebBaseLoader |
|
from langchain_community.retrievers import ArxivRetriever |
|
import bs4 |
|
from langchain_core.rate_limiters import InMemoryRateLimiter |
|
from urllib.parse import urljoin |
|
|
|
rate_limiter = InMemoryRateLimiter( |
|
requests_per_second=0.1, |
|
check_every_n_seconds=0.01, |
|
max_bucket_size=10, |
|
) |
|
|
|
|
|
urlsfile = open("urls.txt") |
|
urls = urlsfile.readlines() |
|
urls = [url.replace("\n","") for url in urls] |
|
urlsfile.close() |
|
|
|
|
|
loader = WebBaseLoader(urls) |
|
docs = loader.load() |
|
|
|
|
|
arxivfile = open("arxiv.txt") |
|
arxivs = arxivfile.readlines() |
|
arxivs = [arxiv.replace("\n","") for arxiv in arxivs] |
|
arxivfile.close() |
|
|
|
retriever = ArxivRetriever( |
|
load_max_docs=2, |
|
get_ful_documents=True, |
|
) |
|
|
|
for arxiv in arxivs: |
|
doc = retriever.invoke(arxiv) |
|
doc[0].metadata['Published'] = str(doc[0].metadata['Published']) |
|
docs.append(doc[0]) |
|
|
|
|
|
def format_docs(docs): |
|
return "\n\n".join(doc.page_content for doc in docs) |
|
|
|
def RAG(llm, docs, embeddings): |
|
|
|
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) |
|
splits = text_splitter.split_documents(docs) |
|
|
|
|
|
vectorstore = Chroma.from_documents(documents=splits, embedding=embeddings) |
|
|
|
|
|
retriever = vectorstore.as_retriever() |
|
|
|
|
|
prompt = hub.pull("rlm/rag-prompt") |
|
|
|
|
|
rag_chain = ( |
|
{"context": retriever | format_docs, "question": RunnablePassthrough()} |
|
| prompt |
|
| llm |
|
| StrOutputParser() |
|
) |
|
|
|
return rag_chain |
|
|
|
|
|
llm = ChatMistralAI(model="mistral-large-latest", rate_limiter=rate_limiter) |
|
|
|
|
|
embed_model = "sentence-transformers/multi-qa-distilbert-cos-v1" |
|
|
|
embeddings = HuggingFaceInstructEmbeddings(model_name=embed_model) |
|
|
|
|
|
|
|
rag_chain = RAG(llm, docs, embeddings) |
|
|
|
def handle_prompt(message, history): |
|
try: |
|
|
|
out="" |
|
for chunk in rag_chain.stream(message): |
|
out += chunk |
|
yield out |
|
except: |
|
raise gr.Error("Requests rate limit exceeded") |
|
|
|
greetingsmessage = "Hi, I'm ChangBot, a chat bot here to assist you with any question related to Chang's research. I'm in pre-alpha stage, so please be patient." |
|
example_questions = [ |
|
"Tell me more about SimBIG", |
|
"How can you constrain neutrino mass with galaxies?", |
|
"What is the DESI BGS?", |
|
"What is SEDflow?", |
|
"What are normalizing flows?" |
|
] |
|
|
|
demo = gr.ChatInterface(handle_prompt, type="messages", title="ChangBot", examples=example_questions, theme=gr.themes.Soft(), description=greetingsmessage) |
|
|
|
demo.launch() |