# https://python.langchain.com/docs/tutorials/rag/ import gradio as gr from langchain import hub from langchain_chroma import Chroma from langchain_core.output_parsers import StrOutputParser from langchain_core.runnables import RunnablePassthrough from langchain_mistralai import MistralAIEmbeddings from langchain_community.embeddings import HuggingFaceInstructEmbeddings from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain_mistralai import ChatMistralAI from langchain_community.document_loaders import PyPDFLoader import requests from pathlib import Path from langchain_community.document_loaders import WebBaseLoader from langchain_community.retrievers import ArxivRetriever import bs4 from langchain_core.rate_limiters import InMemoryRateLimiter from urllib.parse import urljoin rate_limiter = InMemoryRateLimiter( requests_per_second=0.1, # <-- MistralAI free. We can only make a request once every second check_every_n_seconds=0.01, # Wake up every 100 ms to check whether allowed to make a request, max_bucket_size=10, # Controls the maximum burst size. ) # get data urlsfile = open("urls.txt") urls = urlsfile.readlines() urls = [url.replace("\n","") for url in urls] urlsfile.close() # Load, chunk and index the contents of the blog. loader = WebBaseLoader(urls) docs = loader.load() # load arxiv papers arxivfile = open("arxiv.txt") arxivs = arxivfile.readlines() arxivs = [arxiv.replace("\n","") for arxiv in arxivs] arxivfile.close() retriever = ArxivRetriever( load_max_docs=2, get_ful_documents=True, ) for arxiv in arxivs: doc = retriever.invoke(arxiv) doc[0].metadata['Published'] = str(doc[0].metadata['Published']) docs.append(doc[0]) def format_docs(docs): return "\n\n".join(doc.page_content for doc in docs) def RAG(llm, docs, embeddings): # Split text text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) splits = text_splitter.split_documents(docs) # Create vector store vectorstore = Chroma.from_documents(documents=splits, embedding=embeddings) # Retrieve and generate using the relevant snippets of the documents retriever = vectorstore.as_retriever() # Prompt basis example for RAG systems prompt = hub.pull("rlm/rag-prompt") # Create the chain rag_chain = ( {"context": retriever | format_docs, "question": RunnablePassthrough()} | prompt | llm | StrOutputParser() ) return rag_chain # LLM model llm = ChatMistralAI(model="mistral-large-latest", rate_limiter=rate_limiter) # Embeddings embed_model = "sentence-transformers/multi-qa-distilbert-cos-v1" # embed_model = "nvidia/NV-Embed-v2" embeddings = HuggingFaceInstructEmbeddings(model_name=embed_model) # embeddings = MistralAIEmbeddings() # RAG chain rag_chain = RAG(llm, docs, embeddings) def handle_prompt(message, history): try: # Stream output out="" for chunk in rag_chain.stream(message): out += chunk yield out except: raise gr.Error("Requests rate limit exceeded") greetingsmessage = "Hi, I'm ChangBot, a chat bot here to assist you with any question related to Chang's research. I'm in pre-alpha stage, so please be patient." example_questions = [ "Tell me more about SimBIG", "How can you constrain neutrino mass with galaxies?", "What is the DESI BGS?", "What is SEDflow?", "What are normalizing flows?" ] demo = gr.ChatInterface(handle_prompt, type="messages", title="ChangBot", examples=example_questions, theme=gr.themes.Soft(), description=greetingsmessage)#, chatbot=chatbot) demo.launch()