File size: 1,673 Bytes
ef3d2c0
d336c8b
ef3d2c0
 
4007c63
8589cca
7eb62d4
63c44d1
ef3d2c0
 
 
 
 
 
 
 
 
 
d336c8b
17871e5
 
 
 
 
 
 
 
 
 
 
 
d00ba07
17871e5
 
 
 
0cdc59c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import gradio as gr
import image_feature as func


def work11(image1, image2):
    return func.similarity_cpu(image1, image2)
    # return func.infer1(image1, image2)
    # return func.infer4(image1, image2)


# with gr.Blocks() as demo:
#     image_url = gr.Image(type="filepath", label="请选择一张图片")
#     input = gr.Textbox(label='请描述您的问题', placeholder="", lines=1)
#     output = gr.Textbox(label='答案', placeholder="", lines=2, interactive=False)
#     submit = gr.Button('提问', variant="primary")
#     submit.click(work, inputs=[image_url, input], outputs=output)
# demo.launch()

# 定义你的界面
# with gr.Interface(fn=work11,
#                   inputs=[gr.Textbox(label='图片1', lines=1), gr.Textbox(label='图片2', lines=1)],  # 两个文本输入框
#                   outputs=[gr.Textbox(lines=3, label="推理结果")],  # 输出为文本
#                   title="图片相似度推理",  # 界面标题
#                   description="输入两张图片链接进行相似度推理",  # 界面描述
#                   examples=[["https://example.com", "https://google.com"],  # 示例输入
#                             ["https://github.com", "https://twitter.com"]]) as demo:  # 更多示例输入
#     demo.launch()  # 启动界面

demo = gr.Interface(title="图片相似度推理",
                    css="",
                    fn=work11,
                    inputs=[gr.Image(type="pil", label="图片1"), gr.Image(type="pil", label="图片2")],
                    outputs=[gr.Textbox(lines=3, label="推理结果")])
#
# # demo = gr.Interface(fn=work, inputs="image,text", outputs="text")
#
demo.launch()