Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 30,641 Bytes
928f123 ca3e112 928f123 4572f9c 928f123 ac6931b 928f123 ac6931b 16272b2 928f123 ca3e112 4572f9c 928f123 9ddd488 928f123 ca3e112 928f123 ca3e112 125abbd ca3e112 4572f9c 64cc57f 4572f9c ca3e112 928f123 4572f9c 125abbd 4572f9c 6f20169 4572f9c ca3e112 4572f9c 6f20169 4572f9c ca3e112 4572f9c 6f20169 4572f9c ca3e112 4572f9c ca3e112 e45dc88 deb91ab b080e86 deb91ab e45dc88 ca3e112 928f123 ca3e112 928f123 ca3e112 928f123 ca3e112 928f123 ca3e112 928f123 ca3e112 928f123 ca3e112 928f123 ca3e112 928f123 ca3e112 928f123 ca3e112 ffff3d1 125abbd 9381962 0c9dfe9 125abbd 4572f9c 6f20169 125abbd 928f123 ba0d9a2 1c5a53b 35b696c de51e8b 4572f9c 9ddd488 4572f9c 1c5a53b 64cc57f 1c5a53b c53af21 1c5a53b 928f123 1c5a53b 928f123 deee37e b080e86 9ddd488 66f4eb1 928f123 4572f9c 928f123 ca3e112 ba0d9a2 4572f9c 1c5a53b 4572f9c 1c5a53b 4572f9c 1c5a53b 4572f9c 1c5a53b 4572f9c 1c5a53b 4572f9c 1c5a53b 4572f9c 928f123 4572f9c 928f123 4572f9c 928f123 4572f9c 928f123 4572f9c 928f123 4572f9c 928f123 4572f9c 928f123 4572f9c 928f123 4572f9c 928f123 4572f9c 928f123 4572f9c 928f123 4572f9c 928f123 4572f9c 928f123 4572f9c 928f123 4572f9c 16ca275 4572f9c a95339f 4572f9c a95339f 16ca275 a95339f 125abbd ca3e112 4572f9c ca3e112 16ca275 ca3e112 125abbd 928f123 16272b2 125abbd ffff3d1 928f123 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 |
import os
import re
import copy
import datasets
import pandas as pd
import gradio as gr
from collections import defaultdict
from datetime import datetime, timedelta
from datasets import Dataset
from huggingface_hub import HfApi
from huggingface_hub import create_repo
from huggingface_hub.utils import HfHubHTTPError
import utils
from paper.download import (
download_pdf_from_arxiv,
get_papers_from_hf_daily_papers,
get_papers_from_arxiv_ids
)
from paper.parser import extract_text_and_figures
from gen.gemini import get_basic_qa, get_deep_qa
from constants.styles import STYLE
from constants.js import UPDATE_SEARCH_RESULTS, UPDATE_IF_TYPE
from apscheduler.schedulers.background import BackgroundScheduler
def count_nans(row):
count = 0
for _, (k, v) in enumerate(data.items()):
if v is None:
count = count + 1
return count
gemini_api_key = os.getenv("GEMINI_API_KEY")
hf_token = os.getenv("HF_TOKEN")
dataset_repo_id = os.getenv("SOURCE_DATA_REPO_ID") # "chansung/auto-paper-qa2"
request_arxiv_repo_id = os.getenv("REQUEST_DATA_REPO_ID") # "chansung/requested-arxiv-ids-3"
ds = datasets.load_dataset(dataset_repo_id)
request_ds = datasets.load_dataset(request_arxiv_repo_id)
requested_arxiv_ids = []
for request_d in request_ds['train']:
arxiv_ids = request_d['Requested arXiv IDs']
requested_arxiv_ids = requested_arxiv_ids + arxiv_ids
requested_arxiv_ids_df = pd.DataFrame({'Requested arXiv IDs': requested_arxiv_ids})
title2qna = {}
date2qna = {}
date_dict = defaultdict(lambda: defaultdict(lambda: defaultdict(list)))
for data in ds["train"]:
date = data["target_date"].strftime("%Y-%m-%d")
if date in date2qna:
papers = copy.deepcopy(date2qna[date])
for paper in papers:
if paper["title"] == data["title"]:
if count_nans(paper) > count_nans(data):
date2qna[date].remove(paper)
date2qna[date].append(data)
del papers
else:
date2qna[date] = [data]
for date in date2qna:
year, month, day = date.split("-")
papers = date2qna[date]
for paper in papers:
title2qna[paper["title"]] = paper
date_dict[year][month][day].append(paper)
titles = title2qna.keys()
sorted_dates = sorted(date2qna.keys())
sorted_year = sorted(date_dict.keys())
last_year = sorted_year[-1]
sorted_month = sorted(date_dict[last_year].keys())
last_month = sorted_month[-1]
sorted_day = sorted(date_dict[last_year][last_month].keys())
last_day = sorted_day[-1]
last_papers = date_dict[last_year][last_month][last_day]
selected_paper = last_papers[0]
def filter_function(example, ids):
ids_e = example['Requested arXiv IDs']
for iid in ids:
if iid in ids_e:
ids_e.remove(iid)
example['Requested arXiv IDs'] = ids_e
print(example)
return example
def process_arxiv_ids(gemini_api, hf_repo_id, req_hf_repo_id, hf_token, how_many=10):
arxiv_ids = []
ds1 = datasets.load_dataset(req_hf_repo_id)
for d in ds1['train']:
req_arxiv_ids = d['Requested arXiv IDs']
if len(req_arxiv_ids) > 0 and req_arxiv_ids[0] != "top":
arxiv_ids = arxiv_ids + req_arxiv_ids
arxiv_ids = arxiv_ids[:how_many]
if arxiv_ids is not None and len(arxiv_ids) > 0:
print(f"1. Get metadata for the papers [{arxiv_ids}]")
papers = get_papers_from_arxiv_ids(arxiv_ids)
print("...DONE")
print("2. Generating QAs for the paper")
for paper in papers:
try:
title = paper['title']
target_date = paper['target_date']
abstract = paper['paper']['summary']
arxiv_id = paper['paper']['id']
authors = paper['paper']['authors']
print(f"...PROCESSING ON[{arxiv_id}, {title}]")
print(f"......Downloading the paper PDF")
filename = download_pdf_from_arxiv(arxiv_id)
print(f"......DONE")
print(f"......Extracting text and figures")
texts, figures = extract_text_and_figures(filename)
text =' '.join(texts)
print(f"......DONE")
print(f"......Generating the seed(basic) QAs")
qnas = get_basic_qa(text, gemini_api_key=gemini_api, trucate=30000)
qnas['title'] = title
qnas['abstract'] = abstract
qnas['authors'] = ','.join(authors)
qnas['arxiv_id'] = arxiv_id
qnas['target_date'] = target_date
qnas['full_text'] = text
print(f"......DONE")
print(f"......Generating the follow-up QAs")
qnas = get_deep_qa(text, qnas, gemini_api_key=gemini_api, trucate=30000)
del qnas["qna"]
print(f"......DONE")
print(f"......Exporting to HF Dataset repo at [{hf_repo_id}]")
utils.push_to_hf_hub(qnas, hf_repo_id, hf_token)
print(f"......DONE")
print(f"......Updating request arXiv HF Dataset repo at [{req_hf_repo_id}]")
ds1 = ds1['train'].map(
lambda example: filter_function(example, [arxiv_id])
).filter(
lambda example: len(example['Requested arXiv IDs']) > 0
)
ds1.push_to_hub(req_hf_repo_id, token=hf_token)
print(f"......DONE")
except Exception as e:
print(f".......failed due to exception {e}")
continue
HfApi(token=hf_token).restart_space(
repo_id="chansung/paper_qa", token=hf_token
)
def push_to_hf_hub(
df, repo_id, token, append=True
):
exist = False
ds = Dataset.from_pandas(df)
try:
create_repo(request_arxiv_repo_id, repo_type="dataset", token=hf_token)
except HfHubHTTPError as e:
exist = True
if exist and append:
existing_ds = datasets.load_dataset(repo_id)
ds = datasets.concatenate_datasets([existing_ds['train'], ds])
ds.push_to_hub(repo_id, token=token)
def _filter_duplicate_arxiv_ids(arxiv_ids_to_be_added):
ds1 = datasets.load_dataset("chansung/requested-arxiv-ids-3")
ds2 = datasets.load_dataset("chansung/auto-paper-qa2")
unique_arxiv_ids = set()
for d in ds1['train']:
arxiv_ids = d['Requested arXiv IDs']
unique_arxiv_ids = set(list(unique_arxiv_ids) + arxiv_ids)
for d in ds2['train']:
arxiv_id = d['arxiv_id']
unique_arxiv_ids.add(arxiv_id)
return list(set(arxiv_ids_to_be_added) - unique_arxiv_ids)
def _is_arxiv_id_valid(arxiv_id):
pattern = r"^\d{4}\.\d{5}$"
return bool(re.match(pattern, arxiv_id))
def _get_valid_arxiv_ids(arxiv_ids_str):
valid_arxiv_ids = []
invalid_arxiv_ids = []
for arxiv_id in arxiv_ids_str.split(","):
arxiv_id = arxiv_id.strip()
if _is_arxiv_id_valid(arxiv_id):
valid_arxiv_ids.append(arxiv_id)
else:
invalid_arxiv_ids.append(arxiv_id)
return valid_arxiv_ids, invalid_arxiv_ids
def add_arxiv_ids_to_queue(queue, arxiv_ids_str):
print(0)
valid_arxiv_ids, invalid_arxiv_ids = _get_valid_arxiv_ids(arxiv_ids_str)
print("01")
if len(invalid_arxiv_ids) > 0:
gr.Warning(f"found invalid arXiv ids as in {invalid_arxiv_ids}")
if len(valid_arxiv_ids) > 0:
valid_arxiv_ids = _filter_duplicate_arxiv_ids(valid_arxiv_ids)
if len(valid_arxiv_ids) > 0:
valid_arxiv_ids = [[arxiv_id] for arxiv_id in valid_arxiv_ids]
gr.Warning(f"Processing on [{valid_arxiv_ids}]. Other requested arXiv IDs not found on this list should be already processed or being processed...")
valid_arxiv_ids = pd.DataFrame({'Requested arXiv IDs': valid_arxiv_ids})
queue = pd.concat([queue, valid_arxiv_ids])
queue.reset_index(drop=True)
push_to_hf_hub(valid_arxiv_ids, request_arxiv_repo_id, hf_token)
else:
gr.Warning(f"All requested arXiv IDs are already processed or being processed...")
else:
gr.Warning(f"No valid arXiv IDs found...")
return (
queue, gr.Textbox("")
)
def get_paper_by_year(y):
m = sorted(date_dict[y].keys())
last_m = m[-1]
d = sorted(date_dict[y][last_m].keys())
last_d = d[-1]
papers = [paper["title"] for paper in date_dict[y][last_m][last_d]]
papers = list(set(papers))
return (
gr.Dropdown(choices=m, value=last_m),
gr.Dropdown(choices=d, value=last_d),
gr.Dropdown(choices=papers, value=papers[0])
)
def get_paper_by_month(y, m):
d = sorted(date_dict[y][m].keys())
last_d = d[-1]
papers = [paper["title"] for paper in date_dict[y][m][last_d]]
papers = list(set(papers))
return (
gr.Dropdown(choices=d, value=last_d),
gr.Dropdown(choices=papers, value=papers[0])
)
def get_paper_by_day(y, m, d):
papers = [paper["title"] for paper in date_dict[y][m][d]]
papers = list(set(papers))
return gr.Dropdown(choices=papers, value=papers[0])
def set_paper(y, m, d, paper_title):
selected_paper = None
for paper in date_dict[y][m][d]:
if paper["title"] == paper_title:
selected_paper = paper
break
return (
gr.Markdown(f"# {selected_paper['title']}"),
gr.Markdown(
"[![arXiv](https://img.shields.io/badge/arXiv-%s-b31b1b.svg)](https://arxiv.org/abs/%s)" % (selected_paper['arxiv_id'], selected_paper['arxiv_id'])
),
gr.Markdown(
"[![Paper page](https://huggingface.co/datasets/huggingface/badges/resolve/main/paper-page-md.svg)](https://huggingface.co/papers/%s)" % selected_paper['arxiv_id']
),
gr.Markdown(selected_paper["summary"]),
gr.Markdown(f"### π {selected_paper['0_question']}"),
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['0_answers:eli5']}"),
gr.Markdown(f"βͺ **(Technical)** {selected_paper['0_answers:expert']}"),
gr.Markdown(f"### ππ {selected_paper['0_additional_depth_q:follow up question']}"),
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['0_additional_depth_q:answers:eli5']}"),
gr.Markdown(f"βͺ **(Technical)** {selected_paper['0_additional_depth_q:answers:expert']}"),
gr.Markdown(f"### ππ {selected_paper['0_additional_breath_q:follow up question']}"),
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['0_additional_breath_q:answers:eli5']}"),
gr.Markdown(f"βͺ **(Technical)** {selected_paper['0_additional_breath_q:answers:expert']}"),
gr.Markdown(f"### π {selected_paper['1_question']}"),
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['1_answers:eli5']}"),
gr.Markdown(f"βͺ **(Technical)** {selected_paper['1_answers:expert']}"),
gr.Markdown(f"### ππ {selected_paper['1_additional_depth_q:follow up question']}"),
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['1_additional_depth_q:answers:eli5']}"),
gr.Markdown(f"βͺ **(Technical)** {selected_paper['1_additional_depth_q:answers:expert']}"),
gr.Markdown(f"### ππ {selected_paper['1_additional_breath_q:follow up question']}"),
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['1_additional_breath_q:answers:eli5']}"),
gr.Markdown(f"βͺ **(Technical)** {selected_paper['1_additional_breath_q:answers:expert']}"),
gr.Markdown(f"### π {selected_paper['2_question']}"),
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['2_answers:eli5']}"),
gr.Markdown(f"βͺ **(Technical)** {selected_paper['2_answers:expert']}"),
gr.Markdown(f"### ππ {selected_paper['2_additional_depth_q:follow up question']}"),
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['2_additional_depth_q:answers:eli5']}"),
gr.Markdown(f"βͺ **(Technical)** {selected_paper['2_additional_depth_q:answers:expert']}"),
gr.Markdown(f"### ππ {selected_paper['2_additional_breath_q:follow up question']}"),
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['2_additional_breath_q:answers:eli5']}"),
gr.Markdown(f"βͺ **(Technical)** {selected_paper['2_additional_breath_q:answers:expert']}"),
)
def change_exp_type(exp_type):
if exp_type == "ELI5":
return (
gr.Markdown(visible=True), gr.Markdown(visible=False), gr.Markdown(visible=True), gr.Markdown(visible=False), gr.Markdown(visible=True), gr.Markdown(visible=False),
gr.Markdown(visible=True), gr.Markdown(visible=False), gr.Markdown(visible=True), gr.Markdown(visible=False), gr.Markdown(visible=True), gr.Markdown(visible=False),
gr.Markdown(visible=True), gr.Markdown(visible=False), gr.Markdown(visible=True), gr.Markdown(visible=False), gr.Markdown(visible=True), gr.Markdown(visible=False),
)
else:
return (
gr.Markdown(visible=False), gr.Markdown(visible=True), gr.Markdown(visible=False), gr.Markdown(visible=True), gr.Markdown(visible=False), gr.Markdown(visible=True),
gr.Markdown(visible=False), gr.Markdown(visible=True), gr.Markdown(visible=False), gr.Markdown(visible=True), gr.Markdown(visible=False), gr.Markdown(visible=True),
gr.Markdown(visible=False), gr.Markdown(visible=True), gr.Markdown(visible=False), gr.Markdown(visible=True), gr.Markdown(visible=False), gr.Markdown(visible=True),
)
def search(search_in, max_results=3):
results = []
for title in titles:
if len(results) > 3:
break
else:
if search_in in title:
results.append(title)
return (
gr.Textbox(
visible=True if len(results) > 0 else False,
value=results[0] if len(results) > 0 else ""
),
gr.Textbox(
visible=True if len(results) > 1 else False,
value=results[1] if len(results) > 1 else ""
),
gr.Textbox(
visible=True if len(results) > 2 else False,
value=results[2] if len(results) > 2 else ""
)
)
def set_date(title):
for _, (year, months) in enumerate(date_dict.items()):
for _, (month, days) in enumerate(months.items()):
for _, (day, papers) in enumerate(days.items()):
for paper in papers:
if paper['title'] == title:
return (
gr.Dropdown(value=year),
gr.Dropdown(choices=sorted(months), value=month),
gr.Dropdown(choices=sorted(days), value=day),
)
def set_papers(y, m, d, title):
papers = [paper["title"] for paper in date_dict[y][m][d]]
papers = list(set(papers))
return (
gr.Dropdown(choices=papers, value=title),
gr.Textbox("")
)
with gr.Blocks(css=STYLE, theme=gr.themes.Soft()) as demo:
gr.Markdown("# Let's explore papers with auto generated Q&As")
with gr.Column(elem_id="control-panel", elem_classes=["group"]):
with gr.Column():
with gr.Row():
year_dd = gr.Dropdown(sorted_year, value=last_year, label="Year", interactive=True, filterable=False)
month_dd = gr.Dropdown(sorted_month, value=last_month, label="Month", interactive=True, filterable=False)
day_dd = gr.Dropdown(sorted_day, value=last_day, label="Day", interactive=True, filterable=False)
papers_dd = gr.Dropdown(
list(set([paper["title"] for paper in last_papers])),
value=selected_paper["title"],
label="Select paper title",
interactive=True,
filterable=False
)
with gr.Column(elem_classes=["no-gap"]):
search_in = gr.Textbox("", placeholder="Enter keywords to search...", elem_classes=["textbox-no-label"])
search_r1 = gr.Button(visible=False, elem_id="search_r1", elem_classes=["no-radius"])
search_r2 = gr.Button(visible=False, elem_id="search_r2", elem_classes=["no-radius"])
search_r3 = gr.Button(visible=False, elem_id="search_r3", elem_classes=["no-radius"])
search_r4 = gr.Button(visible=False, elem_id="search_r4", elem_classes=["no-radius"])
search_r5 = gr.Button(visible=False, elem_id="search_r5", elem_classes=["no-radius"])
search_r6 = gr.Button(visible=False, elem_id="search_r6", elem_classes=["no-radius"])
search_r7 = gr.Button(visible=False, elem_id="search_r7", elem_classes=["no-radius"])
search_r8 = gr.Button(visible=False, elem_id="search_r8", elem_classes=["no-radius"])
search_r9 = gr.Button(visible=False, elem_id="search_r9", elem_classes=["no-radius"])
search_r10 = gr.Button(visible=False, elem_id="search_r10", elem_classes=["no-radius"])
conv_type = gr.Radio(choices=["Q&As", "Chat"], value="Q&As", interactive=True, visible=False, elem_classes=["conv-type"])
with gr.Column(scale=7):
title = gr.Markdown(f"# {selected_paper['title']}")
# with gr.Row():
with gr.Row():
arxiv_link = gr.Markdown(
"[![arXiv](https://img.shields.io/badge/arXiv-%s-b31b1b.svg)](https://arxiv.org/abs/%s)" % (selected_paper['arxiv_id'], selected_paper['arxiv_id'])
)
hf_paper_link = gr.Markdown(
"[![Paper page](https://huggingface.co/datasets/huggingface/badges/resolve/main/paper-page-md.svg)](https://huggingface.co/papers/%s)" % selected_paper['arxiv_id']
)
gr.Button("Chat about the paper", interactive=False)
summary = gr.Markdown(f"{selected_paper['summary']}", elem_classes=["small-font"])
with gr.Column(elem_id="chat_block", visible=False):
gr.Chatbot([("hello", "world"), ("how", "are you?")])
with gr.Column(elem_id="qna_block", visible=True):
with gr.Row():
with gr.Column(scale=7):
gr.Markdown("## Auto generated Questions & Answers")
exp_type = gr.Radio(choices=["ELI5", "Technical"], value="ELI5", elem_classes=["exp-type"], scale=3)
# 1
with gr.Column(elem_classes=["group"], visible=True) as q_0:
basic_q_0 = gr.Markdown(f"### π {selected_paper['0_question']}")
basic_q_eli5_0 = gr.Markdown(f"βͺ **(ELI5)** {selected_paper['0_answers:eli5']}", elem_classes=["small-font"])
basic_q_expert_0 = gr.Markdown(f"βͺ **(Technical)** {selected_paper['0_answers:expert']}", visible=False, elem_classes=["small-font"])
with gr.Accordion("Additional question #1", open=False, elem_classes=["accordion"]) as aq_0_0:
depth_q_0 = gr.Markdown(f"### ππ {selected_paper['0_additional_depth_q:follow up question']}")
depth_q_eli5_0 = gr.Markdown(f"βͺ **(ELI5)** {selected_paper['0_additional_depth_q:answers:eli5']}", elem_classes=["small-font"])
depth_q_expert_0 = gr.Markdown(f"βͺ **(Technical)** {selected_paper['0_additional_depth_q:answers:expert']}", visible=False, elem_classes=["small-font"])
with gr.Accordion("Additional question #2", open=False, elem_classes=["accordion"]) as aq_0_1:
breath_q_0 = gr.Markdown(f"### ππ {selected_paper['0_additional_breath_q:follow up question']}")
breath_q_eli5_0 = gr.Markdown(f"βͺ **(ELI5)** {selected_paper['0_additional_breath_q:answers:eli5']}", elem_classes=["small-font"])
breath_q_expert_0 = gr.Markdown(f"βͺ **(Technical)** {selected_paper['0_additional_breath_q:answers:expert']}", visible=False, elem_classes=["small-font"])
# 2
with gr.Column(elem_classes=["group"], visible=True) as q_1:
basic_q_1 = gr.Markdown(f"### π {selected_paper['1_question']}")
basic_q_eli5_1 = gr.Markdown(f"βͺ **(ELI5)** {selected_paper['1_answers:eli5']}", elem_classes=["small-font"])
basic_q_expert_1 = gr.Markdown(f"βͺ **(Technical)** {selected_paper['1_answers:expert']}", visible=False, elem_classes=["small-font"])
with gr.Accordion("Additional question #1", open=False, elem_classes=["accordion"]) as aq_1_0:
depth_q_1 = gr.Markdown(f"### ππ {selected_paper['1_additional_depth_q:follow up question']}")
depth_q_eli5_1 = gr.Markdown(f"βͺ **(ELI5)** {selected_paper['1_additional_depth_q:answers:eli5']}", elem_classes=["small-font"])
depth_q_expert_1 = gr.Markdown(f"βͺ **(Technical)** {selected_paper['1_additional_depth_q:answers:expert']}", visible=False, elem_classes=["small-font"])
with gr.Accordion("Additional question #2", open=False, elem_classes=["accordion"]) as aq_1_1:
breath_q_1 = gr.Markdown(f"### ππ {selected_paper['1_additional_breath_q:follow up question']}")
breath_q_eli5_1 = gr.Markdown(f"βͺ **(ELI5)** {selected_paper['1_additional_breath_q:answers:eli5']}", elem_classes=["small-font"])
breath_q_expert_1 = gr.Markdown(f"βͺ **(Technical)** {selected_paper['1_additional_breath_q:answers:expert']}", visible=False, elem_classes=["small-font"])
# 3
with gr.Column(elem_classes=["group"], visible=True) as q_2:
basic_q_2 = gr.Markdown(f"### π {selected_paper['2_question']}")
basic_q_eli5_2 = gr.Markdown(f"βͺ **(ELI5)** {selected_paper['2_answers:eli5']}", elem_classes=["small-font"])
basic_q_expert_2 = gr.Markdown(f"βͺ **(Technical)** {selected_paper['2_answers:expert']}", visible=False, elem_classes=["small-font"])
with gr.Accordion("Additional question #1", open=False, elem_classes=["accordion"]) as aq_2_0:
depth_q_2 = gr.Markdown(f"### ππ {selected_paper['2_additional_depth_q:follow up question']}")
depth_q_eli5_2 = gr.Markdown(f"βͺ **(ELI5)** {selected_paper['2_additional_depth_q:answers:eli5']}", elem_classes=["small-font"])
depth_q_expert_2 = gr.Markdown(f"βͺ **(Technical)** {selected_paper['2_additional_depth_q:answers:expert']}", visible=False, elem_classes=["small-font"])
with gr.Accordion("Additional question #2", open=False, elem_classes=["accordion"]) as aq_2_1:
breath_q_2 = gr.Markdown(f"### ππ {selected_paper['2_additional_breath_q:follow up question']}")
breath_q_eli5_2 = gr.Markdown(f"βͺ **(ELI5)** {selected_paper['2_additional_breath_q:answers:eli5']}", elem_classes=["small-font"])
breath_q_expert_2 = gr.Markdown(f"βͺ **(Technical)** {selected_paper['2_additional_breath_q:answers:expert']}", visible=False, elem_classes=["small-font"])
gr.Markdown("## Request any arXiv ids")
arxiv_queue = gr.Dataframe(
headers=["Requested arXiv IDs"], col_count=(1, "fixed"),
value=requested_arxiv_ids_df,
datatype=["str"],
interactive=False
)
arxiv_id_enter = gr.Textbox(placeholder="Enter comma separated arXiv IDs...", elem_classes=["textbox-no-label"])
arxiv_id_enter.submit(
add_arxiv_ids_to_queue,
[arxiv_queue, arxiv_id_enter],
[arxiv_queue, arxiv_id_enter]
)
gr.Markdown("The target papers are collected from [Hugging Face π€ Daily Papers](https://huggingface.co/papers) on a daily basis. "
"The entire data is generated by [Google's Gemini 1.0](https://deepmind.google/technologies/gemini/) Pro. "
"If you are curious how it is done, visit the [Auto Paper Q&A Generation project repository](https://github.com/deep-diver/auto-paper-analysis) "
"Also, the generated dataset is hosted on Hugging Face π€ Dataset repository as well([Link](https://huggingface.co/datasets/chansung/auto-paper-qa2)). ")
search_r1.click(set_date, search_r1, [year_dd, month_dd, day_dd]).then(
set_papers,
inputs=[year_dd, month_dd, day_dd, search_r1],
outputs=[papers_dd, search_in]
)
search_r2.click(set_date, search_r2, [year_dd, month_dd, day_dd]).then(
set_papers,
inputs=[year_dd, month_dd, day_dd, search_r2],
outputs=[papers_dd, search_in]
)
search_r3.click(set_date, search_r3, [year_dd, month_dd, day_dd]).then(
set_papers,
inputs=[year_dd, month_dd, day_dd, search_r3],
outputs=[papers_dd, search_in]
)
search_r4.click(set_date, search_r4, [year_dd, month_dd, day_dd]).then(
set_papers,
inputs=[year_dd, month_dd, day_dd, search_r4],
outputs=[papers_dd, search_in]
)
search_r5.click(set_date, search_r5, [year_dd, month_dd, day_dd]).then(
set_papers,
inputs=[year_dd, month_dd, day_dd, search_r5],
outputs=[papers_dd, search_in]
)
search_r6.click(set_date, search_r6, [year_dd, month_dd, day_dd]).then(
set_papers,
inputs=[year_dd, month_dd, day_dd, search_r6],
outputs=[papers_dd, search_in]
)
search_r7.click(set_date, search_r7, [year_dd, month_dd, day_dd]).then(
set_papers,
inputs=[year_dd, month_dd, day_dd, search_r7],
outputs=[papers_dd, search_in]
)
search_r8.click(set_date, search_r8, [year_dd, month_dd, day_dd]).then(
set_papers,
inputs=[year_dd, month_dd, day_dd, search_r8],
outputs=[papers_dd, search_in]
)
search_r9.click(set_date, search_r9, [year_dd, month_dd, day_dd]).then(
set_papers,
inputs=[year_dd, month_dd, day_dd, search_r9],
outputs=[papers_dd, search_in]
)
search_r10.click(set_date, search_r10, [year_dd, month_dd, day_dd]).then(
set_papers,
inputs=[year_dd, month_dd, day_dd, search_r10],
outputs=[papers_dd, search_in]
)
year_dd.input(
get_paper_by_year,
inputs=[year_dd],
outputs=[month_dd, day_dd, papers_dd]
).then(
set_paper,
[year_dd, month_dd, day_dd, papers_dd],
[
title, summary,
basic_q_0, basic_q_eli5_0, basic_q_expert_0,
depth_q_0, depth_q_eli5_0, depth_q_expert_0,
breath_q_0, breath_q_eli5_0, breath_q_expert_0,
basic_q_1, basic_q_eli5_1, basic_q_expert_1,
depth_q_1, depth_q_eli5_1, depth_q_expert_1,
breath_q_1, breath_q_eli5_1, breath_q_expert_1,
basic_q_2, basic_q_eli5_2, basic_q_expert_2,
depth_q_2, depth_q_eli5_2, depth_q_expert_2,
breath_q_2, breath_q_eli5_2, breath_q_expert_2
]
)
month_dd.input(
get_paper_by_month,
inputs=[year_dd, month_dd],
outputs=[day_dd, papers_dd]
).then(
set_paper,
[year_dd, month_dd, day_dd, papers_dd],
[
title, arxiv_link, hf_paper_link, summary,
basic_q_0, basic_q_eli5_0, basic_q_expert_0,
depth_q_0, depth_q_eli5_0, depth_q_expert_0,
breath_q_0, breath_q_eli5_0, breath_q_expert_0,
basic_q_1, basic_q_eli5_1, basic_q_expert_1,
depth_q_1, depth_q_eli5_1, depth_q_expert_1,
breath_q_1, breath_q_eli5_1, breath_q_expert_1,
basic_q_2, basic_q_eli5_2, basic_q_expert_2,
depth_q_2, depth_q_eli5_2, depth_q_expert_2,
breath_q_2, breath_q_eli5_2, breath_q_expert_2
]
)
day_dd.input(
get_paper_by_day,
inputs=[year_dd, month_dd, day_dd],
outputs=[papers_dd]
).then(
set_paper,
[year_dd, month_dd, day_dd, papers_dd],
[
title, arxiv_link, hf_paper_link, summary,
basic_q_0, basic_q_eli5_0, basic_q_expert_0,
depth_q_0, depth_q_eli5_0, depth_q_expert_0,
breath_q_0, breath_q_eli5_0, breath_q_expert_0,
basic_q_1, basic_q_eli5_1, basic_q_expert_1,
depth_q_1, depth_q_eli5_1, depth_q_expert_1,
breath_q_1, breath_q_eli5_1, breath_q_expert_1,
basic_q_2, basic_q_eli5_2, basic_q_expert_2,
depth_q_2, depth_q_eli5_2, depth_q_expert_2,
breath_q_2, breath_q_eli5_2, breath_q_expert_2
]
)
papers_dd.change(
set_paper,
[year_dd, month_dd, day_dd, papers_dd],
[
title, arxiv_link, hf_paper_link, summary,
basic_q_0, basic_q_eli5_0, basic_q_expert_0,
depth_q_0, depth_q_eli5_0, depth_q_expert_0,
breath_q_0, breath_q_eli5_0, breath_q_expert_0,
basic_q_1, basic_q_eli5_1, basic_q_expert_1,
depth_q_1, depth_q_eli5_1, depth_q_expert_1,
breath_q_1, breath_q_eli5_1, breath_q_expert_1,
basic_q_2, basic_q_eli5_2, basic_q_expert_2,
depth_q_2, depth_q_eli5_2, depth_q_expert_2,
breath_q_2, breath_q_eli5_2, breath_q_expert_2
]
)
search_in.change(
inputs=[search_in],
outputs=[
search_r1, search_r2, search_r3, search_r4, search_r5,
search_r6, search_r7, search_r8, search_r9, search_r10
],
js=UPDATE_SEARCH_RESULTS % str(list(titles)),
fn=None
)
exp_type.select(
change_exp_type,
exp_type,
[
basic_q_eli5_0, basic_q_expert_0, depth_q_eli5_0, depth_q_expert_0, breath_q_eli5_0, breath_q_expert_0,
basic_q_eli5_1, basic_q_expert_1, depth_q_eli5_1, depth_q_expert_1, breath_q_eli5_1, breath_q_expert_1,
basic_q_eli5_2, basic_q_expert_2, depth_q_eli5_2, depth_q_expert_2, breath_q_eli5_2, breath_q_expert_2
]
)
conv_type.select(
inputs=[conv_type],
js=UPDATE_IF_TYPE,
outputs=None,
fn=None
)
start_date = datetime.now() + timedelta(minutes=1)
scheduler = BackgroundScheduler()
scheduler.add_job(
process_arxiv_ids,
trigger='interval',
seconds=3600,
args=[
gemini_api_key,
dataset_repo_id,
request_arxiv_repo_id,
hf_token
],
start_date=start_date
)
scheduler.start()
demo.launch(share=True, debug=True) |