Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 10,055 Bytes
ca3e112 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import gradio as gr
import copy
import datasets
STYLE = """
.small-font{
font-size: 12pt !important;
}
.small-font:hover {
font-size: 20px !important;
transition: font-size 0.3s ease-out;
transition-delay: 0.8s;
}
.group {
padding-left: 10px;
padding-right: 10px;
padding-bottom: 10px;
border: 2px dashed gray;
border-radius: 20px;
box-shadow: 5px 3px 10px 1px rgba(0, 0, 0, 0.4) !important;
}
.accordion > button > span{
font-size: 12pt !important;
}
.accordion {
border-style: dashed !important;
border-left-width: 2px !important;
border-bottom-width: 2.5px !important;
border-top: none !important;
border-right: none !important;
box-shadow: none !important;
}
"""
dataset_repo_id = "chansung/auto-paper-qa2"
ds = datasets.load_dataset(dataset_repo_id)
date2qna = {}
longest_qans = 0
def count_nans(row):
count = 0
for _, (k, v) in enumerate(data.items()):
if v is None:
count = count + 1
return count
for data in ds["train"]:
date = data["target_date"].strftime("%Y-%m-%d")
if date in date2qna:
papers = copy.deepcopy(date2qna[date])
for paper in papers:
if paper["title"] == data["title"]:
if count_nans(paper) > count_nans(data):
date2qna[date].remove(paper)
date2qna[date].append(data)
del papers
else:
date2qna[date] = [data]
sorted_dates = sorted(date2qna.keys())
last_date = sorted_dates[-1]
last_papers = date2qna[last_date]
selected_paper = last_papers[0]
def get_papers(date):
papers = [paper["title"] for paper in date2qna[date]]
return gr.Dropdown(
papers,
value=papers[0]
)
def set_paper(date, paper_title):
selected_paper = None
for paper in date2qna[date]:
if paper["title"] == paper_title:
selected_paper = paper
break
return (
gr.Markdown(f"# {selected_paper['title']}"), gr.Markdown(selected_paper["summary"]),
gr.Markdown(f"## π {selected_paper['0_question']}"),
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['0_answers:eli5']}"),
gr.Markdown(f"βͺ **(Technical)** {selected_paper['0_answers:expert']}"),
gr.Markdown(f"## ππ {selected_paper['0_additional_depth_q:follow up question']}"),
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['0_additional_depth_q:answers:eli5']}"),
gr.Markdown(f"βͺ **(Technical)** {selected_paper['0_additional_depth_q:answers:expert']}"),
gr.Markdown(f"## ππ {selected_paper['0_additional_breath_q:follow up question']}"),
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['0_additional_breath_q:answers:eli5']}"),
gr.Markdown(f"βͺ **(Technical)** {selected_paper['0_additional_breath_q:answers:expert']}"),
gr.Markdown(f"## π {selected_paper['1_question']}"),
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['1_answers:eli5']}"),
gr.Markdown(f"βͺ **(Technical)** {selected_paper['1_answers:expert']}"),
gr.Markdown(f"## ππ {selected_paper['1_additional_depth_q:follow up question']}"),
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['1_additional_depth_q:answers:eli5']}"),
gr.Markdown(f"βͺ **(Technical)** {selected_paper['1_additional_depth_q:answers:expert']}"),
gr.Markdown(f"## ππ {selected_paper['1_additional_breath_q:follow up question']}"),
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['1_additional_breath_q:answers:eli5']}"),
gr.Markdown(f"βͺ **(Technical)** {selected_paper['1_additional_breath_q:answers:expert']}"),
gr.Markdown(f"## π {selected_paper['2_question']}"),
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['2_answers:eli5']}"),
gr.Markdown(f"βͺ **(Technical)** {selected_paper['2_answers:expert']}"),
gr.Markdown(f"## ππ {selected_paper['2_additional_depth_q:follow up question']}"),
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['2_additional_depth_q:answers:eli5']}"),
gr.Markdown(f"βͺ **(Technical)** {selected_paper['2_additional_depth_q:answers:expert']}"),
gr.Markdown(f"## ππ {selected_paper['2_additional_breath_q:follow up question']}"),
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['2_additional_breath_q:answers:eli5']}"),
gr.Markdown(f"βͺ **(Technical)** {selected_paper['2_additional_breath_q:answers:expert']}"),
)
with gr.Blocks(css=STYLE) as demo:
date_dd = gr.Dropdown(
sorted_dates,
value=last_date,
label="Select date",
interactive=True
)
papers_dd = gr.Dropdown(
[paper["title"] for paper in last_papers],
value=selected_paper["title"],
label="Select paper title",
interactive=True
)
date_dd.input(
get_papers,
date_dd,
papers_dd
)
title = gr.Markdown(f"# {selected_paper['title']}")
summary = gr.Markdown(f"{selected_paper['summary']}", elem_classes=["small-font"])
gr.Markdown("## Auto generated Questions & Answers")
# 1
with gr.Column(elem_classes=["group"], visible=True) as q_0:
basic_q_0 = gr.Markdown(f"## π {selected_paper['0_question']}")
basic_q_eli5_0 = gr.Markdown(f"βͺ **(ELI5)** {selected_paper['0_answers:eli5']}", elem_classes=["small-font"])
basic_q_expert_0 = gr.Markdown(f"βͺ **(Technical)** {selected_paper['0_answers:expert']}", elem_classes=["small-font"])
with gr.Accordion("Additional question #1", open=False, elem_classes=["accordion"]) as aq_0_0:
depth_q_0 = gr.Markdown(f"## ππ {selected_paper['0_additional_depth_q:follow up question']}")
depth_q_eli5_0 = gr.Markdown(f"βͺ **(ELI5)** {selected_paper['0_additional_depth_q:answers:eli5']}", elem_classes=["small-font"])
depth_q_expert_0 = gr.Markdown(f"βͺ **(Technical)** {selected_paper['0_additional_depth_q:answers:expert']}", elem_classes=["small-font"])
with gr.Accordion("Additional question #2", open=False, elem_classes=["accordion"]) as aq_0_1:
breath_q_0 = gr.Markdown(f"## ππ {selected_paper['0_additional_breath_q:follow up question']}")
breath_q_eli5_0 = gr.Markdown(f"βͺ **(ELI5)** {selected_paper['0_additional_breath_q:answers:eli5']}", elem_classes=["small-font"])
breath_q_expert_0 = gr.Markdown(f"βͺ **(Technical)** {selected_paper['0_additional_breath_q:answers:expert']}", elem_classes=["small-font"])
# 2
with gr.Column(elem_classes=["group"], visible=True) as q_1:
basic_q_1 = gr.Markdown(f"## π {selected_paper['1_question']}")
basic_q_eli5_1 = gr.Markdown(f"βͺ **(ELI5)** {selected_paper['1_answers:eli5']}", elem_classes=["small-font"])
basic_q_expert_1 = gr.Markdown(f"βͺ **(Technical)** {selected_paper['1_answers:expert']}", elem_classes=["small-font"])
with gr.Accordion("Additional question #1", open=False, elem_classes=["accordion"]) as aq_1_0:
depth_q_1 = gr.Markdown(f"## ππ {selected_paper['1_additional_depth_q:follow up question']}")
depth_q_eli5_1 = gr.Markdown(f"βͺ **(ELI5)** {selected_paper['1_additional_depth_q:answers:eli5']}", elem_classes=["small-font"])
depth_q_expert_1 = gr.Markdown(f"βͺ **(Technical)** {selected_paper['1_additional_depth_q:answers:expert']}", elem_classes=["small-font"])
with gr.Accordion("Additional question #2", open=False, elem_classes=["accordion"]) as aq_1_1:
breath_q_1 = gr.Markdown(f"## ππ {selected_paper['1_additional_breath_q:follow up question']}")
breath_q_eli5_1 = gr.Markdown(f"βͺ **(ELI5)** {selected_paper['1_additional_breath_q:answers:eli5']}", elem_classes=["small-font"])
breath_q_expert_1 = gr.Markdown(f"βͺ **(Technical)** {selected_paper['1_additional_breath_q:answers:expert']}", elem_classes=["small-font"])
# 3
with gr.Column(elem_classes=["group"], visible=True) as q_2:
basic_q_2 = gr.Markdown(f"## π {selected_paper['2_question']}")
basic_q_eli5_2 = gr.Markdown(f"βͺ **(ELI5)** {selected_paper['2_answers:eli5']}", elem_classes=["small-font"])
basic_q_expert_2 = gr.Markdown(f"βͺ **(Technical)** {selected_paper['2_answers:expert']}", elem_classes=["small-font"])
with gr.Accordion("Additional question #1", open=False, elem_classes=["accordion"]) as aq_2_0:
depth_q_2 = gr.Markdown(f"## ππ {selected_paper['2_additional_depth_q:follow up question']}")
depth_q_eli5_2 = gr.Markdown(f"βͺ **(ELI5)** {selected_paper['2_additional_depth_q:answers:eli5']}", elem_classes=["small-font"])
depth_q_expert_2 = gr.Markdown(f"βͺ **(Technical)** {selected_paper['2_additional_depth_q:answers:expert']}", elem_classes=["small-font"])
with gr.Accordion("Additional question #2", open=False, elem_classes=["accordion"]) as aq_2_1:
breath_q_2 = gr.Markdown(f"## ππ {selected_paper['2_additional_breath_q:follow up question']}")
breath_q_eli5_2 = gr.Markdown(f"βͺ **(ELI5)** {selected_paper['2_additional_breath_q:answers:eli5']}", elem_classes=["small-font"])
breath_q_expert_2 = gr.Markdown(f"βͺ **(Technical)** {selected_paper['2_additional_breath_q:answers:expert']}", elem_classes=["small-font"])
papers_dd.input(
set_paper,
[date_dd, papers_dd],
[
title, summary,
basic_q_0, basic_q_eli5_0, basic_q_expert_0,
depth_q_0, depth_q_eli5_0, depth_q_expert_0,
breath_q_0, breath_q_eli5_0, breath_q_expert_0,
basic_q_1, basic_q_eli5_1, basic_q_expert_1,
depth_q_1, depth_q_eli5_1, depth_q_expert_1,
breath_q_1, breath_q_eli5_1, breath_q_expert_1,
basic_q_2, basic_q_eli5_2, basic_q_expert_2,
depth_q_2, depth_q_eli5_2, depth_q_expert_2,
breath_q_2, breath_q_eli5_2, breath_q_expert_2
]
)
demo.launch(share=True) |