Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import gradio as gr | |
import copy | |
import datasets | |
STYLE = """ | |
.main { | |
width: 90% !important; | |
margin: 0 auto; /* Center the container */ | |
} | |
.small-font{ | |
font-size: 12pt !important; | |
} | |
.small-font:hover { | |
font-size: 20px !important; | |
transition: font-size 0.3s ease-out; | |
transition-delay: 0.8s; | |
} | |
.group { | |
padding-left: 10px; | |
padding-right: 10px; | |
padding-bottom: 10px; | |
border: 2px dashed gray; | |
border-radius: 20px; | |
box-shadow: 5px 3px 10px 1px rgba(0, 0, 0, 0.4) !important; | |
} | |
.accordion > button > span{ | |
font-size: 12pt !important; | |
} | |
.accordion { | |
border-style: dashed !important; | |
border-left-width: 2px !important; | |
border-bottom-width: 2.5px !important; | |
border-top: none !important; | |
border-right: none !important; | |
box-shadow: none !important; | |
} | |
.no-gap { | |
gap: 0px; | |
} | |
.no-radius { | |
border-radius: 0px; | |
} | |
#search_input > label > span { | |
display: none; | |
} | |
""" | |
dataset_repo_id = "chansung/auto-paper-qa2" | |
ds = datasets.load_dataset(dataset_repo_id) | |
title2qna = {} | |
date2qna = {} | |
longest_qans = 0 | |
def count_nans(row): | |
count = 0 | |
for _, (k, v) in enumerate(data.items()): | |
if v is None: | |
count = count + 1 | |
return count | |
for data in ds["train"]: | |
date = data["target_date"].strftime("%Y-%m-%d") | |
if date in date2qna: | |
papers = copy.deepcopy(date2qna[date]) | |
for paper in papers: | |
if paper["title"] == data["title"]: | |
if count_nans(paper) > count_nans(data): | |
date2qna[date].remove(paper) | |
date2qna[date].append(data) | |
del papers | |
else: | |
date2qna[date] = [data] | |
for date in date2qna: | |
papers = date2qna[date] | |
for paper in papers: | |
title2qna[paper["title"]] = paper | |
titles = title2qna.keys() | |
sorted_dates = sorted(date2qna.keys()) | |
last_date = sorted_dates[-1] | |
last_papers = date2qna[last_date] | |
selected_paper = last_papers[0] | |
def get_papers(date): | |
papers = [paper["title"] for paper in date2qna[date]] | |
return gr.Dropdown( | |
papers, | |
value=papers[0] | |
) | |
def set_paper(date, paper_title): | |
selected_paper = None | |
for paper in date2qna[date]: | |
if paper["title"] == paper_title: | |
selected_paper = paper | |
break | |
return ( | |
gr.Markdown(f"# {selected_paper['title']}"), gr.Markdown(selected_paper["summary"]), | |
gr.Markdown(f"## π {selected_paper['0_question']}"), | |
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['0_answers:eli5']}"), | |
gr.Markdown(f"βͺ **(Technical)** {selected_paper['0_answers:expert']}"), | |
gr.Markdown(f"## ππ {selected_paper['0_additional_depth_q:follow up question']}"), | |
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['0_additional_depth_q:answers:eli5']}"), | |
gr.Markdown(f"βͺ **(Technical)** {selected_paper['0_additional_depth_q:answers:expert']}"), | |
gr.Markdown(f"## ππ {selected_paper['0_additional_breath_q:follow up question']}"), | |
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['0_additional_breath_q:answers:eli5']}"), | |
gr.Markdown(f"βͺ **(Technical)** {selected_paper['0_additional_breath_q:answers:expert']}"), | |
gr.Markdown(f"## π {selected_paper['1_question']}"), | |
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['1_answers:eli5']}"), | |
gr.Markdown(f"βͺ **(Technical)** {selected_paper['1_answers:expert']}"), | |
gr.Markdown(f"## ππ {selected_paper['1_additional_depth_q:follow up question']}"), | |
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['1_additional_depth_q:answers:eli5']}"), | |
gr.Markdown(f"βͺ **(Technical)** {selected_paper['1_additional_depth_q:answers:expert']}"), | |
gr.Markdown(f"## ππ {selected_paper['1_additional_breath_q:follow up question']}"), | |
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['1_additional_breath_q:answers:eli5']}"), | |
gr.Markdown(f"βͺ **(Technical)** {selected_paper['1_additional_breath_q:answers:expert']}"), | |
gr.Markdown(f"## π {selected_paper['2_question']}"), | |
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['2_answers:eli5']}"), | |
gr.Markdown(f"βͺ **(Technical)** {selected_paper['2_answers:expert']}"), | |
gr.Markdown(f"## ππ {selected_paper['2_additional_depth_q:follow up question']}"), | |
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['2_additional_depth_q:answers:eli5']}"), | |
gr.Markdown(f"βͺ **(Technical)** {selected_paper['2_additional_depth_q:answers:expert']}"), | |
gr.Markdown(f"## ππ {selected_paper['2_additional_breath_q:follow up question']}"), | |
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['2_additional_breath_q:answers:eli5']}"), | |
gr.Markdown(f"βͺ **(Technical)** {selected_paper['2_additional_breath_q:answers:expert']}"), | |
) | |
def dumb(title): | |
if len(title) > 10: | |
return f"{title[:10]}..." | |
return title | |
def search(search_in, max_results=3): | |
results = [] | |
for title in titles: | |
if len(results) > 3: | |
break | |
else: | |
if search_in in title: | |
results.append(title) | |
return ( | |
gr.Textbox( | |
visible=True if len(results) > 0 else False, | |
value=results[0] if len(results) > 0 else "" | |
), | |
gr.Textbox( | |
visible=True if len(results) > 1 else False, | |
value=results[1] if len(results) > 1 else "" | |
), | |
gr.Textbox( | |
visible=True if len(results) > 2 else False, | |
value=results[2] if len(results) > 2 else "" | |
) | |
) | |
UPDATE_SEARCH_RESULTS = f""" | |
function search(searchIn, maxResults = 3) {{ | |
if (searchIn.trim().length > 0) {{ | |
const results = []; | |
let titles = {list(titles)}; | |
for (const title of titles) {{ // Assuming 'titles' is an array defined elsewhere | |
if (results.length > 3) {{ | |
break; | |
}} else {{ | |
if (title.toLowerCase().includes(searchIn.toLowerCase())) {{ // JavaScript's equivalent to Python's 'in' | |
results.push(title); | |
}} | |
}} | |
}} | |
// Handle UI elements (Explanation below) | |
const resultElements = [1, 2, 3].map(index => {{ | |
return results[index - 1] || ''; | |
}}); | |
if (resultElements[0] == '') {{ | |
document.getElementById('search_r1').style.display = 'none'; | |
}} else {{ | |
document.getElementById('search_r1').style.display = 'block'; | |
}} | |
if (resultElements[1] == '') {{ | |
document.getElementById('search_r2').style.display = 'none'; | |
}} else {{ | |
document.getElementById('search_r2').style.display = 'block'; | |
}} | |
if (resultElements[2] == '') {{ | |
document.getElementById('search_r3').style.display = 'none'; | |
}} else {{ | |
document.getElementById('search_r3').style.display = 'block'; | |
}} | |
return resultElements; | |
}} else {{ | |
document.getElementById('search_r1').style.display = 'none'; | |
document.getElementById('search_r2').style.display = 'none'; | |
document.getElementById('search_r3').style.display = 'none'; | |
return ['', '', ''] | |
}} | |
}} | |
""" | |
def set_date(title): | |
paper = title2qna[title] | |
date = paper["target_date"].strftime("%Y-%m-%d") | |
return date | |
def set_papers(date, title): | |
papers = [paper["title"] for paper in date2qna[date]] | |
return ( | |
gr.Dropdown(choices=papers, value=title), | |
gr.Textbox("") | |
) | |
with gr.Blocks(css=STYLE) as demo: | |
with gr.Row(): | |
date_dd = gr.Dropdown( | |
sorted_dates, | |
value=last_date, | |
label="Select date", | |
interactive=True, | |
scale=3, | |
) | |
papers_dd = gr.Dropdown( | |
[paper["title"] for paper in last_papers], | |
value=selected_paper["title"], | |
label="Select paper title", | |
interactive=True, | |
scale=7, | |
) | |
with gr.Column(elem_classes=["no-gap"]): | |
search_in = gr.Textbox("", placeholder="Enter keywords to search...", elem_id="search_input") | |
search_r1 = gr.Button(visible=False, elem_id="search_r1", elem_classes=["no-radius"]) | |
search_r2 = gr.Button(visible=False, elem_id="search_r2", elem_classes=["no-radius"]) | |
search_r3 = gr.Button(visible=False, elem_id="search_r3", elem_classes=["no-radius"]) | |
search_r1.click( | |
set_date, | |
search_r1, | |
date_dd | |
).then( | |
set_papers, | |
inputs=[date_dd, search_r1], | |
outputs=[papers_dd, search_in] | |
) | |
search_r2.click( | |
set_date, | |
search_r2, | |
date_dd | |
).then( | |
set_papers, | |
inputs=[date_dd, search_r2], | |
outputs=[papers_dd, search_in] | |
) | |
search_r3.click( | |
set_date, | |
search_r3, | |
date_dd | |
).then( | |
set_papers, | |
inputs=[date_dd, search_r3], | |
outputs=[papers_dd, search_in] | |
) | |
title = gr.Markdown(f"# {selected_paper['title']}") | |
summary = gr.Markdown(f"{selected_paper['summary']}", elem_classes=["small-font"]) | |
gr.Markdown("## Auto generated Questions & Answers") | |
# 1 | |
with gr.Column(elem_classes=["group"], visible=True) as q_0: | |
basic_q_0 = gr.Markdown(f"## π {selected_paper['0_question']}") | |
basic_q_eli5_0 = gr.Markdown(f"βͺ **(ELI5)** {selected_paper['0_answers:eli5']}", elem_classes=["small-font"]) | |
basic_q_expert_0 = gr.Markdown(f"βͺ **(Technical)** {selected_paper['0_answers:expert']}", elem_classes=["small-font"]) | |
with gr.Accordion("Additional question #1", open=False, elem_classes=["accordion"]) as aq_0_0: | |
depth_q_0 = gr.Markdown(f"## ππ {selected_paper['0_additional_depth_q:follow up question']}") | |
depth_q_eli5_0 = gr.Markdown(f"βͺ **(ELI5)** {selected_paper['0_additional_depth_q:answers:eli5']}", elem_classes=["small-font"]) | |
depth_q_expert_0 = gr.Markdown(f"βͺ **(Technical)** {selected_paper['0_additional_depth_q:answers:expert']}", elem_classes=["small-font"]) | |
with gr.Accordion("Additional question #2", open=False, elem_classes=["accordion"]) as aq_0_1: | |
breath_q_0 = gr.Markdown(f"## ππ {selected_paper['0_additional_breath_q:follow up question']}") | |
breath_q_eli5_0 = gr.Markdown(f"βͺ **(ELI5)** {selected_paper['0_additional_breath_q:answers:eli5']}", elem_classes=["small-font"]) | |
breath_q_expert_0 = gr.Markdown(f"βͺ **(Technical)** {selected_paper['0_additional_breath_q:answers:expert']}", elem_classes=["small-font"]) | |
# 2 | |
with gr.Column(elem_classes=["group"], visible=True) as q_1: | |
basic_q_1 = gr.Markdown(f"## π {selected_paper['1_question']}") | |
basic_q_eli5_1 = gr.Markdown(f"βͺ **(ELI5)** {selected_paper['1_answers:eli5']}", elem_classes=["small-font"]) | |
basic_q_expert_1 = gr.Markdown(f"βͺ **(Technical)** {selected_paper['1_answers:expert']}", elem_classes=["small-font"]) | |
with gr.Accordion("Additional question #1", open=False, elem_classes=["accordion"]) as aq_1_0: | |
depth_q_1 = gr.Markdown(f"## ππ {selected_paper['1_additional_depth_q:follow up question']}") | |
depth_q_eli5_1 = gr.Markdown(f"βͺ **(ELI5)** {selected_paper['1_additional_depth_q:answers:eli5']}", elem_classes=["small-font"]) | |
depth_q_expert_1 = gr.Markdown(f"βͺ **(Technical)** {selected_paper['1_additional_depth_q:answers:expert']}", elem_classes=["small-font"]) | |
with gr.Accordion("Additional question #2", open=False, elem_classes=["accordion"]) as aq_1_1: | |
breath_q_1 = gr.Markdown(f"## ππ {selected_paper['1_additional_breath_q:follow up question']}") | |
breath_q_eli5_1 = gr.Markdown(f"βͺ **(ELI5)** {selected_paper['1_additional_breath_q:answers:eli5']}", elem_classes=["small-font"]) | |
breath_q_expert_1 = gr.Markdown(f"βͺ **(Technical)** {selected_paper['1_additional_breath_q:answers:expert']}", elem_classes=["small-font"]) | |
# 3 | |
with gr.Column(elem_classes=["group"], visible=True) as q_2: | |
basic_q_2 = gr.Markdown(f"## π {selected_paper['2_question']}") | |
basic_q_eli5_2 = gr.Markdown(f"βͺ **(ELI5)** {selected_paper['2_answers:eli5']}", elem_classes=["small-font"]) | |
basic_q_expert_2 = gr.Markdown(f"βͺ **(Technical)** {selected_paper['2_answers:expert']}", elem_classes=["small-font"]) | |
with gr.Accordion("Additional question #1", open=False, elem_classes=["accordion"]) as aq_2_0: | |
depth_q_2 = gr.Markdown(f"## ππ {selected_paper['2_additional_depth_q:follow up question']}") | |
depth_q_eli5_2 = gr.Markdown(f"βͺ **(ELI5)** {selected_paper['2_additional_depth_q:answers:eli5']}", elem_classes=["small-font"]) | |
depth_q_expert_2 = gr.Markdown(f"βͺ **(Technical)** {selected_paper['2_additional_depth_q:answers:expert']}", elem_classes=["small-font"]) | |
with gr.Accordion("Additional question #2", open=False, elem_classes=["accordion"]) as aq_2_1: | |
breath_q_2 = gr.Markdown(f"## ππ {selected_paper['2_additional_breath_q:follow up question']}") | |
breath_q_eli5_2 = gr.Markdown(f"βͺ **(ELI5)** {selected_paper['2_additional_breath_q:answers:eli5']}", elem_classes=["small-font"]) | |
breath_q_expert_2 = gr.Markdown(f"βͺ **(Technical)** {selected_paper['2_additional_breath_q:answers:expert']}", elem_classes=["small-font"]) | |
date_dd.input( | |
get_papers, | |
date_dd, | |
papers_dd | |
).then( | |
set_paper, | |
[date_dd, papers_dd], | |
[ | |
title, summary, | |
basic_q_0, basic_q_eli5_0, basic_q_expert_0, | |
depth_q_0, depth_q_eli5_0, depth_q_expert_0, | |
breath_q_0, breath_q_eli5_0, breath_q_expert_0, | |
basic_q_1, basic_q_eli5_1, basic_q_expert_1, | |
depth_q_1, depth_q_eli5_1, depth_q_expert_1, | |
breath_q_1, breath_q_eli5_1, breath_q_expert_1, | |
basic_q_2, basic_q_eli5_2, basic_q_expert_2, | |
depth_q_2, depth_q_eli5_2, depth_q_expert_2, | |
breath_q_2, breath_q_eli5_2, breath_q_expert_2 | |
] | |
) | |
papers_dd.change( | |
set_paper, | |
[date_dd, papers_dd], | |
[ | |
title, summary, | |
basic_q_0, basic_q_eli5_0, basic_q_expert_0, | |
depth_q_0, depth_q_eli5_0, depth_q_expert_0, | |
breath_q_0, breath_q_eli5_0, breath_q_expert_0, | |
basic_q_1, basic_q_eli5_1, basic_q_expert_1, | |
depth_q_1, depth_q_eli5_1, depth_q_expert_1, | |
breath_q_1, breath_q_eli5_1, breath_q_expert_1, | |
basic_q_2, basic_q_eli5_2, basic_q_expert_2, | |
depth_q_2, depth_q_eli5_2, depth_q_expert_2, | |
breath_q_2, breath_q_eli5_2, breath_q_expert_2 | |
] | |
) | |
search_in.change( | |
inputs=[search_in], | |
outputs=[search_r1, search_r2, search_r3], | |
js=UPDATE_SEARCH_RESULTS, | |
fn=None | |
) | |
demo.launch(share=True) |