File size: 13,816 Bytes
a1ca2de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ceefdf5
 
 
a1ca2de
 
 
 
 
 
 
 
 
 
 
 
 
 
ceefdf5
a1ca2de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ceefdf5
a1ca2de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
from typing import Literal
from pathlib import Path

import uuid
import json
import re
import asyncio
import toml

import torch
from compel import Compel

from diffusers import (
    DiffusionPipeline,
    StableDiffusionPipeline,
    AutoencoderKL,
    DPMSolverMultistepScheduler,
    DDPMScheduler,
    DPMSolverSinglestepScheduler,
    DPMSolverSDEScheduler,
    DEISMultistepScheduler,
)

from .utils import (
    set_all_seeds,
)
from .palmchat import (
    palm_prompts,
    gen_text,
)

_gpus = 0

class ImageMaker:
    # TODO: DocString...
    """Class for generating images from prompts."""

    __ratio = {'3:2':  [768, 512],
               '4:3':  [680, 512],
               '16:9': [912, 512],
               '1:1':  [512, 512],
               '9:16': [512, 912],
               '3:4':  [512, 680],
               '2:3':  [512, 768]}
    __allocated = False

    def __init__(self, model_base: str,
                       clip_skip: int = 2,
                       sampling: Literal['sde-dpmsolver++'] = 'sde-dpmsolver++',
                       vae: str = None,
                       safety: bool = True,
                       neg_prompt: str = None,
                       device: str = None) -> None:
        """Initialize the ImageMaker class.

        Args:
            model_base (str): Filename of the model base.
            clip_skip (int, optional): Number of layers to skip in the clip model. Defaults to 2.
            sampling (Literal['sde-dpmsolver++'], optional): Sampling method. Defaults to 'sde-dpmsolver++'.
            vae (str, optional): Filename of the VAE model. Defaults to None.
            safety (bool, optional): Whether to use the safety checker. Defaults to True.
            device (str, optional): Device to use for the model. Defaults to None.
        """

        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if not device else device
        self.__model_base = model_base
        self.__clip_skip = clip_skip
        self.__sampling = sampling
        self.__vae = vae
        self.__safety = safety
        self.neg_prompt = neg_prompt

        print("Loading the Stable Diffusion model into memory...")
        self.__sd_model = StableDiffusionPipeline.from_single_file(self.model_base,
                                                              torch_dtype=torch.float16,
                                                              use_safetensors=True,
                                                              )

        # Clip Skip
        self.__sd_model.text_encoder.text_model.encoder.layers = self.__sd_model.text_encoder.text_model.encoder.layers[:12 - (self.clip_skip - 1)]

        # Sampling method
        if True: # TODO: Sampling method :: self.sampling == 'sde-dpmsolver++'
            scheduler = DPMSolverMultistepScheduler.from_config(self.__sd_model.scheduler.config)
            scheduler.config.algorithm_type = 'sde-dpmsolver++'
            self.__sd_model.scheduler = scheduler
        
        # TODO: Use LoRA

        # VAE
        if self.vae:
            vae_model = AutoencoderKL.from_pretrained(self.vae, torch_dtype=torch.float16)
            self.__sd_model.vae = vae_model

        if not self.safety:
            self.__sd_model.safety_checker = None
            self.__sd_model.requires_safety_checker = False

        print(f"Loaded model to {self.device}")
        self.__sd_model = self.__sd_model.to(self.device)

        # Text Encoder using Compel
        self.__compel_proc = Compel(tokenizer=self.__sd_model.tokenizer, text_encoder=self.__sd_model.text_encoder, truncate_long_prompts=False)
        
        output_dir = Path('.') / 'outputs'
        if not output_dir.exists():
            output_dir.mkdir(parents=True, exist_ok=True)
        elif output_dir.is_file():
            assert False, f"A file with the same name as the desired directory ('{str(output_dir)}') already exists."

    
    def text2image(self,
                   prompt: str, neg_prompt: str = None,
                   ratio: Literal['3:2', '4:3', '16:9', '1:1', '9:16', '3:4', '2:3'] = '1:1',
                   step: int = 28,
                   cfg: float = 4.5,
                   seed: int = None) -> str:
        """Generate an image from the prompt.

        Args:
            prompt (str): Prompt for the image generation.
            neg_prompt (str, optional): Negative prompt for the image generation. Defaults to None.
            ratio (Literal['3:2', '4:3', '16:9', '1:1', '9:16', '3:4', '2:3'], optional): Ratio of the generated image. Defaults to '1:1'.
            step (int, optional): Number of iterations for the diffusion. Defaults to 20.
            cfg (float, optional): Configuration for the diffusion. Defaults to 7.5.
            seed (int, optional): Seed for the random number generator. Defaults to None.

        Returns:
            str: Path to the generated image.
        """

        output_filename = Path('.') / 'outputs' / str(uuid.uuid4())

        if not seed or seed == -1:
            seed = torch.randint(0, 2**32 - 1, (1,)).item()
        set_all_seeds(seed)

        width, height = self.__ratio[ratio]

        prompt_embeds, negative_prompt_embeds = self.__get_pipeline_embeds(prompt, neg_prompt or self.neg_prompt)
        
        # Generate the image
        result = self.__sd_model(prompt_embeds=prompt_embeds,
                              negative_prompt_embeds=negative_prompt_embeds,
                              guidance_scale=cfg,
                              num_inference_steps=step,
                              width=width,
                              height=height,
                            )
        if self.__safety and result.nsfw_content_detected[0]:
            print("=== NSFW Content Detected ===")
            raise ValueError("Potential NSFW content was detected in one or more images.")

        img = result.images[0]
        img.save(str(output_filename.with_suffix('.png')))

        return str(output_filename.with_suffix('.png'))
    

    def generate_character_prompts(self, character_name: str, age: str, job: str,
                                         keywords: list[str] = None, 
                                         creative_mode: Literal['sd character', 'cartoon', 'realistic'] = 'cartoon') -> tuple[str, str]:
        """Generate positive and negative prompts for a character based on given attributes.

        Args:
            character_name (str): Character's name.
            age (str): Age of the character.
            job (str): The profession or job of the character.
            keywords (list[str]): List of descriptive words for the character.

        Returns:
            tuple[str, str]: A tuple of positive and negative prompts.
        """

        positive = "" # add static prompt for character if needed (e.g. "chibi, cute, anime")
        negative = palm_prompts['image_gen']['neg_prompt']

        # Generate prompts with PaLM
        t = palm_prompts['image_gen']['character']['gen_prompt']
        q = palm_prompts['image_gen']['character']['query']
        query_string = t.format(input=q.format(character_name=character_name,
                                               job=job,
                                               age=age,
                                               keywords=', '.join(keywords) if keywords else 'Nothing'))
        try:
            response, response_txt = asyncio.run(asyncio.wait_for(
                                                    gen_text(query_string, mode="text", use_filter=False),
                                                    timeout=10)
                                                )
        except asyncio.TimeoutError:
            raise TimeoutError("The response time for PaLM API exceeded the limit.")
        
        try: 
            res_json = json.loads(response_txt)
            positive = (res_json['primary_sentence'] if not positive else f"{positive}, {res_json['primary_sentence']}") + ", "
            gender_keywords = ['1man', '1woman', '1boy', '1girl', '1male', '1female', '1gentleman', '1lady']
            positive += ', '.join([w if w not in gender_keywords else w + '+++' for w in res_json['descriptors']])
            positive = f'{job.lower()}+'.join(positive.split(job.lower()))
        except:
            print("=== PaLM Response ===")
            print(response.filters)
            print(response_txt)
            print("=== PaLM Response ===")            
            raise ValueError("The response from PaLM API is not in the expected format.")
            
        return (positive.lower(), negative.lower())


    def generate_background_prompts(self, genre:str, place:str, mood:str,
                                          title:str, chapter_title:str, chapter_plot:str) -> tuple[str, str]:
        """Generate positive and negative prompts for a background image based on given attributes.

        Args:
            genre (str): Genre of the story.
            place (str): Place of the story.
            mood (str): Mood of the story.
            title (str): Title of the story.
            chapter_title (str): Title of the chapter.
            chapter_plot (str): Plot of the chapter.

        Returns:
            tuple[str, str]: A tuple of positive and negative prompts.
        """

        positive = "painting+++, anime+, catoon, watercolor, wallpaper, text---" # add static prompt for background if needed (e.g. "chibi, cute, anime")
        negative = "realistic, human, character, people, photograph, 3d render, blurry, grayscale, oversaturated, " + palm_prompts['image_gen']['neg_prompt']

        # Generate prompts with PaLM
        t = palm_prompts['image_gen']['background']['gen_prompt']
        q = palm_prompts['image_gen']['background']['query']
        query_string = t.format(input=q.format(genre=genre,
                                               place=place,
                                               mood=mood,
                                               title=title,
                                               chapter_title=chapter_title,
                                               chapter_plot=chapter_plot))
        try:
            response, response_txt = asyncio.run(asyncio.wait_for(
                                                    gen_text(query_string, mode="text", use_filter=False),
                                                    timeout=10)
                                                )
        except asyncio.TimeoutError:
            raise TimeoutError("The response time for PaLM API exceeded the limit.")
        
        try: 
            res_json = json.loads(response_txt)
            positive = (res_json['primary_sentence'] if not positive else f"{positive}, {res_json['primary_sentence']}") + ", "
            positive += ', '.join(res_json['descriptors'])
        except:
            print("=== PaLM Response ===")
            print(response.filters)
            print(response_txt)
            print("=== PaLM Response ===")            
            raise ValueError("The response from PaLM API is not in the expected format.")
            
        return (positive.lower(), negative.lower())


    def __get_pipeline_embeds(self, prompt:str, negative_prompt:str) -> tuple[torch.Tensor, torch.Tensor]:
        """
        Get pipeline embeds for prompts bigger than the maxlength of the pipeline

        Args:
            prompt (str): Prompt for the image generation.
            neg_prompt (str): Negative prompt for the image generation.

        Returns:
            tuple[torch.Tensor, torch.Tensor]: A tuple of positive and negative prompt embeds.
        """
        conditioning = self.__compel_proc.build_conditioning_tensor(prompt)
        negative_conditioning = self.__compel_proc.build_conditioning_tensor(negative_prompt)
        return self.__compel_proc.pad_conditioning_tensors_to_same_length([conditioning, negative_conditioning])


    @property
    def model_base(self):
        """Model base

        Returns:
            str: The model base (read-only)
        """
        return self.__model_base

    @property
    def clip_skip(self):
        """Clip Skip

        Returns:
            int: The number of layers to skip in the clip model (read-only)
        """
        return self.__clip_skip

    @property
    def sampling(self):
        """Sampling method

        Returns:
            Literal['sde-dpmsolver++']: The sampling method (read-only)
        """
        return self.__sampling

    @property
    def vae(self):
        """VAE

        Returns:
            str: The VAE (read-only)
        """
        return self.__vae

    @property
    def safety(self):
        """Safety checker

        Returns:
            bool: Whether to use the safety checker (read-only)
        """
        return self.__safety
    
    @property
    def device(self):
        """Device

        Returns:
            str: The device (read-only)
        """
        return self.__device

    @device.setter
    def device(self, value):
        if self.__allocated:
            raise RuntimeError("Cannot change device after the model is loaded.")

        if value == 'cpu':
            self.__device = value
        else:
            global _gpus
            self.__device = f'{value}:{_gpus}'
            max_gpu = torch.cuda.device_count()
            _gpus = (_gpus + 1) if (_gpus + 1) < max_gpu else 0
        self.__allocated = True

    @property
    def neg_prompt(self):
        """Negative prompt

        Returns:
            str: The negative prompt
        """
        return self.__neg_prompt

    @neg_prompt.setter
    def neg_prompt(self, value):
        if not value:
            self.__neg_prompt = ""
        else:
            self.__neg_prompt = value