File size: 7,589 Bytes
30b11c6
6498440
f144f21
026a3b5
e218e4c
30b11c6
916b870
e218e4c
f144f21
916b870
e218e4c
 
916b870
 
 
 
 
ab855e2
e218e4c
 
026a3b5
 
 
 
 
 
 
 
 
 
 
 
 
 
e218e4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
916b870
 
 
 
 
e218e4c
f144f21
916b870
 
 
f144f21
 
 
916b870
 
 
 
 
 
f5292db
916b870
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e218e4c
916b870
e218e4c
916b870
e218e4c
916b870
 
 
 
 
 
 
e218e4c
916b870
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e218e4c
 
 
 
 
916b870
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import streamlit as st
from PIL import Image
import os
import pandas as pd
import tomli


pd.options.mode.chained_assignment = None


st.set_page_config(layout="wide")


st.markdown(
    "<div style='background-color: lightblue; text-align: center; padding: 10px;'><h1 style='font-size: 70px;'>Our History in Data</h1></div>",
    unsafe_allow_html=True,
)


@st.cache_data
def load_data():
    df_ind = pd.read_csv("data/df_individuals_score.csv", index_col=[0])
    df_ind = df_ind.drop("region_code", axis=1)
    df_ind["productive_year"] = df_ind["productive_year"].astype(int)
    df_ind["individual_wikidata_id"] = "https://www.wikidata.org/wiki/" + df_ind[
        "individual_wikidata_id"
    ].astype(str)

    df_ind = df_ind[df_ind["productive_year"] <= 1800]
    return df_ind


df_ind = load_data()


def load_region_descriptions():
    with open("regions.toml", "rb") as toml_file:
        data = tomli.load(toml_file)
    return data


# Function to get description based on selected region
def get_region_description(region_data, selected_region):
    return region_data[selected_region]["description"]


region_data = load_region_descriptions()


# page = st.sidebar.selectbox("Navigate to:", ["Home", "Methodology", "Team"])
page = st.sidebar.radio(
    "Menu",
    ["Home", "Methodology", "Team", "About"],
    key="navigation_radio",
)


st.sidebar.success(
    "This project is led by Charles de Dampierre, Folgert Karsdorp, Mike Kestemont, Valentin Thouzeau and Nicolas Baumard"
)


# Test change
if page == "Home":

    # Set the global index path
    global_index_path = "data/immaterial_index/figures_trends_R/results"
    global_index_path_per_capita = (
        "data/immaterial_index/figures_trends_R/results_capita"
    )
    unseen_index_path = (
        "data/immaterial_index/figures_trends_R/figures_unseen/results_unseen"
    )
    unseen_capita_index_path = "data/immaterial_index/figures_trends_R/figures_unseen/results_unseen/per_capita"

    population_path = "data/population"
    maps_path = "data/map_figures"

    from region_list import region_list

    region_filtered = list(region_list.keys())

    index_paths = {}

    for region_key in region_list:
        # Create the index paths for the current region
        index_paths[region_key] = {
            "map": f"{maps_path}/map_{region_key}.png",
            "global_index": f"{global_index_path}/{region_key}.png",
            "global_index_per_capita": f"{global_index_path_per_capita}/{region_key}.png",
            "unseen_index": f"{unseen_index_path}/{region_key}.png",
            "unseen_index_capita": f"{unseen_capita_index_path}/{region_key}.png",
            "population_index": f"{population_path}/{region_key}.png",
        }

    # Get the region names (keys) from the index_paths dictionary
    regions = list(index_paths.keys())

    # Allow the user to select a region
    selected_region = st.sidebar.selectbox(
        "Region:", regions, index=regions.index("Japan")
    )

    # Display the selected region's images vertically
    if selected_region in index_paths:
        st.markdown(
            f"<h1 style='text-align: left; font-size: 50px;'>{selected_region}</h1>",
            unsafe_allow_html=True,
        )

        try:
            st.image(
                f"image/{selected_region}.jpeg",
                caption="Japan",
                use_column_width=False,
                width=1000,
            )
        except:
            pass

        col1, col2, col3 = st.columns([8, 1, 8])

        # Display the data in the left column
        with col1:
            for key, path in index_paths[selected_region].items():
                if os.path.exists(path):

                    if key == "global_index":
                        st.subheader("Cultural Index")
                        st.image(
                            Image.open(path),
                            caption=key.capitalize(),
                            use_column_width=True,
                        )
                    elif key == "global_index_per_capita":
                        st.subheader("Cultural Index per capita")
                        st.image(
                            Image.open(path),
                            caption=key.capitalize(),
                            use_column_width=True,
                        )
                    elif key == "unseen_index":
                        st.subheader(
                            "Cultural Index corrected by the unseen-species model"
                        )
                        print(path)
                        st.image(
                            Image.open(path),
                            caption=key.capitalize(),
                            use_column_width=True,
                        )
                    elif key == "unseen_index_capita":
                        st.subheader(
                            "Cultural Index per capita corrected by the unseen-species model"
                        )
                        st.image(
                            Image.open(path),
                            caption=key.capitalize(),
                            use_column_width=True,
                        )

                else:
                    st.write(f"File for {key.capitalize()} does not exist.")

            with col3:

                try:
                    st.image(
                        Image.open(f"data/map_figures/map_{selected_region}.png"),
                        use_column_width=True,
                        width=1000,
                    )
                except:
                    pass

                st.subheader("Analysis")
                try:
                    region_description = get_region_description(
                        region_data, selected_region
                    )
                    st.write(f"{region_description}")
                except:
                    st.write("Analysis not ready yet")

                st.subheader("Cultural Producers in Wikidata")
                df = df_ind[df_ind["region_name"] == selected_region]
                df = df.drop(["region_name", "decade"], axis=1)
                df = df[
                    [
                        "individual_name",
                        "productive_year",
                        "score",
                        "individual_wikidata_id" "",
                    ]
                ]
                df = df.sort_values("score", ascending=False)
                df = df.rename(columns={"score": "Number of Catalogs"})

                min_date = region_list[selected_region]["time_range"][0]
                max_date = region_list[selected_region]["time_range"][1]
                df = df[df["productive_year"] >= min_date]
                df = df[df["productive_year"] <= max_date]
                df["productive_year"] = df["productive_year"].astype(int)
                df = df.reset_index(drop=True)
                st.dataframe(df)
                st.write(f"Number of Cultural producers active before 1800: {len(df)}")

                try:
                    st.subheader("Population")
                    st.image(
                        Image.open(path),
                        caption=key.capitalize(),
                        use_column_width=True,
                    )
                except:
                    pass


elif page == "Methodology":
    # Add content for the Methodology section here
    st.markdown("<h2>Methodology</h2>", unsafe_allow_html=True)
    st.write("Here you can describe the methodology used in your project.")