Spaces:
Running
Running
File size: 50,966 Bytes
d6eab4f b481357 d6eab4f 5c8cf60 b481357 5df6c06 d6eab4f b481357 d6eab4f b481357 5df6c06 d6eab4f b481357 d6eab4f b481357 5df6c06 b481357 d6eab4f b481357 5df6c06 b481357 d6eab4f b481357 d6eab4f b481357 d6eab4f b481357 3311ec5 b481357 3311ec5 b481357 3311ec5 5df6c06 b481357 3311ec5 5df6c06 b481357 3311ec5 d6eab4f 3311ec5 b481357 d6eab4f 3311ec5 b481357 74e2e27 4c2dac4 74e2e27 4c2dac4 74e2e27 4c2dac4 74e2e27 4c2dac4 74e2e27 4c2dac4 74e2e27 b481357 41fb331 b481357 41fb331 b481357 3311ec5 b481357 41fb331 b481357 5c8cf60 b481357 d6eab4f 5c8cf60 116d200 5c8cf60 d6eab4f b481357 3311ec5 b481357 2509cce b481357 2509cce b481357 2509cce b481357 2509cce b481357 2509cce b481357 5df6c06 b481357 5df6c06 b481357 5df6c06 d6eab4f 5df6c06 d6eab4f 5df6c06 d6eab4f 5df6c06 d6eab4f 5df6c06 d6eab4f 5df6c06 d6eab4f 5c8cf60 5df6c06 d6eab4f 5c8cf60 aee51e6 5c8cf60 d6eab4f 5df6c06 d6eab4f 5df6c06 d6eab4f 5df6c06 d6eab4f b481357 5df6c06 d6eab4f 5df6c06 d6eab4f 5df6c06 3187d23 d6eab4f 5df6c06 5c8cf60 5df6c06 d6eab4f 5c8cf60 d6eab4f 5df6c06 d6eab4f 5df6c06 d6eab4f 5df6c06 d6eab4f 5df6c06 d6eab4f 5df6c06 d6eab4f 5df6c06 d6eab4f 5df6c06 d6eab4f b481357 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 |
# import gradio as gr
# import numpy as np
# import json
# import pandas as pd
# from openai import OpenAI
# import yaml
# from typing import Optional, List, Dict, Tuple, Any
# from topk_sae import FastAutoencoder
# import torch
# import plotly.express as px
# from collections import Counter
# from huggingface_hub import hf_hub_download
# import os
# import networkx as nx
# import plotly.graph_objs as go
# from ast import literal_eval as make_tuple
# import random
# import os
# print(os.getenv('MODEL_REPO_ID'))
# # Constants
# EMBEDDING_MODEL = "text-embedding-3-small"
# d_model = 1536
# n_dirs = d_model * 6
# k = 64
# auxk = 128
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# torch.set_grad_enabled(False)
# # Function to download all necessary files
# def download_all_files():
# files_to_download = [
# "astroPH_paper_metadata.csv",
# "csLG_feature_analysis_results_64.json",
# "astroPH_topk_indices_64_9216_int32.npy",
# "astroPH_64_9216.pth",
# "astroPH_topk_values_64_9216_float16.npy",
# "csLG_abstract_texts.json",
# "csLG_topk_values_64_9216_float16.npy",
# "csLG_abstract_embeddings_float16.npy",
# "csLG_paper_metadata.csv",
# "csLG_64_9216.pth",
# "astroPH_abstract_texts.json",
# "astroPH_feature_analysis_results_64.json",
# "csLG_topk_indices_64_9216_int32.npy",
# "astroPH_abstract_embeddings_float16.npy",
# # "csLG_clean_families_64_9216.json",
# # "astroPH_clean_families_64_9216.json",
# # "astroPH_family_analysis_64_9216.json",
# "csLG_family_analysis_64_9216.json"
# ]
# for file in files_to_download:
# local_path = os.path.join("data", file)
# os.makedirs(os.path.dirname(local_path), exist_ok=True)
# hf_hub_download(repo_id="charlieoneill/saerch-ai-data", filename=file, local_dir="data")
# print(f"Downloaded {file}")
# # Load configuration and initialize OpenAI client
# download_all_files()
# # Load the API key from the environment variable
# api_key = os.getenv('openai_key')
# # Ensure the API key is set
# if not api_key:
# raise ValueError("The environment variable 'openai_key' is not set.")
# # Initialize the OpenAI client with the API key
# client = OpenAI(api_key=api_key)
# # Function to load data for a specific subject
# def load_subject_data(subject):
# embeddings_path = f"data/{subject}_abstract_embeddings_float16.npy"
# texts_path = f"data/{subject}_abstract_texts.json"
# feature_analysis_path = f"data/{subject}_feature_analysis_results_{k}.json"
# metadata_path = f'data/{subject}_paper_metadata.csv'
# topk_indices_path = f"data/{subject}_topk_indices_{k}_{n_dirs}_int32.npy"
# norms_path = f"data/{subject}_norms_{k}_{n_dirs}.npy"
# topk_values_path = f"data/{subject}_topk_values_{k}_{n_dirs}_float16.npy"
# families_path = f"data/{subject}_clean_families_{k}_{n_dirs}.json"
# family_analysis_path = f"data/{subject}_family_analysis_{k}_{n_dirs}.json"
# nns_32to64 = json.load(open(f"data/{subject}_nns_32to64.json"))
# nns_16to32 = json.load(open(f"data/{subject}_nns_16to32.json"))
# nns_16to64 = json.load(open(f"data/{subject}_nns_16to64.json"))
# abstract_embeddings = np.load(embeddings_path).astype(np.float32) # Load float16 and convert to float32
# with open(texts_path, 'r') as f:
# abstract_texts = json.load(f)
# with open(feature_analysis_path, 'r') as f:
# feature_analysis = json.load(f)
# df_metadata = pd.read_csv(metadata_path)
# topk_indices = np.load(topk_indices_path) # Already in int32, no conversion needed
# topk_values = np.load(topk_values_path).astype(np.float32)
# norms = np.load(norms_path).astype(np.float32)
# model_filename = f"{subject}_64_9216.pth"
# model_path = os.path.join("data", model_filename)
# ae = FastAutoencoder(n_dirs, d_model, k, auxk, multik=0).to(device)
# ae.load_state_dict(torch.load(model_path))
# ae.eval()
# weights = torch.load(model_path)
# decoder = weights['decoder.weight'].cpu().numpy()
# del weights
# with open(family_analysis_path, 'r') as f:
# family_analysis = json.load(f)
# return {
# 'abstract_embeddings': abstract_embeddings,
# 'abstract_texts': abstract_texts,
# 'feature_analysis': feature_analysis,
# 'df_metadata': df_metadata,
# 'topk_indices': topk_indices,
# 'topk_values': topk_values,
# 'norms': norms,
# 'nns_32to64': nns_32to64,
# 'nns_16to64': nns_16to64,
# 'ae': ae,
# 'decoder': decoder,
# # 'feature_families': feature_families,
# 'family_analysis': family_analysis
# }
import gradio as gr
import numpy as np
import json
import pandas as pd
from openai import OpenAI
import yaml
from typing import Optional, List, Dict, Tuple, Any
from topk_sae import FastAutoencoder
import torch
import plotly.express as px
from collections import Counter
from huggingface_hub import hf_hub_download
import os
import networkx as nx
import plotly.graph_objs as go
from ast import literal_eval as make_tuple
import random
import math
import os
print(os.getenv('MODEL_REPO_ID'))
# Constants
EMBEDDING_MODEL = "text-embedding-3-small"
d_model = 1536
n_dirs = d_model * 6
k = 64
auxk = 128
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
torch.set_grad_enabled(False)
# Function to download all necessary files
def download_all_files():
files_to_download = [
"astroPH_paper_metadata.csv",
"csLG_feature_analysis_results_64.json",
"astroPH_topk_indices_64_9216_int32.npy",
"astroPH_64_9216.pth",
"astroPH_topk_values_64_9216_float16.npy",
"csLG_abstract_texts.json",
"csLG_topk_values_64_9216_float16.npy",
"csLG_abstract_embeddings_float16.npy",
"csLG_paper_metadata.csv",
"csLG_64_9216.pth",
"astroPH_abstract_texts.json",
"astroPH_feature_analysis_results_64.json",
"csLG_topk_indices_64_9216_int32.npy",
"astroPH_abstract_embeddings_float16.npy",
# "csLG_clean_families_64_9216.json",
# "astroPH_clean_families_64_9216.json",
"astroPH_family_analysis_64_9216.json",
"csLG_family_analysis_64_9216.json",
"csLG_nns_32to64.json",
"csLG_nns_16to32.json",
"csLG_nns_16to64.json",
"astroPH_nns_32to64.json",
"astroPH_nns_16to32.json",
"astroPH_nns_16to64.json",
"csLG_norms_64_9216_float16.npy",
"astroPH_norms_64_9216_float16.npy"
]
for file in files_to_download:
local_path = os.path.join("data", file)
os.makedirs(os.path.dirname(local_path), exist_ok=True)
hf_hub_download(repo_id="charlieoneill/saerch-ai-data", filename=file, local_dir="data")
print(f"Downloaded {file}")
# Load configuration and initialize OpenAI client
download_all_files()
# Load the API key from the environment variable
api_key = os.getenv('openai_key')
# Ensure the API key is set
if not api_key:
raise ValueError("The environment variable 'openai_key' is not set.")
# Initialize the OpenAI client with the API key
client = OpenAI(api_key=api_key)
# Function to load data for a specific subject
def load_subject_data(subject):
embeddings_path = f"data/{subject}_abstract_embeddings_float16.npy"
texts_path = f"data/{subject}_abstract_texts.json"
feature_analysis_path = f"data/{subject}_feature_analysis_results_{k}.json"
metadata_path = f'data/{subject}_paper_metadata.csv'
topk_indices_path = f"data/{subject}_topk_indices_{k}_{n_dirs}_int32.npy"
norms_path = f"data/{subject}_norms_{k}_{n_dirs}_float16.npy"
topk_values_path = f"data/{subject}_topk_values_{k}_{n_dirs}_float16.npy"
families_path = f"data/{subject}_clean_families_{k}_{n_dirs}.json"
family_analysis_path = f"data/{subject}_family_analysis_{k}_{n_dirs}.json"
nns_32to64 = json.load(open(f"data/{subject}_nns_32to64.json"))
nns_16to32 = json.load(open(f"data/{subject}_nns_16to32.json"))
nns_16to64 = json.load(open(f"data/{subject}_nns_16to64.json"))
abstract_embeddings = np.load(embeddings_path).astype(np.float32) # Load float16 and convert to float32
with open(texts_path, 'r') as f:
abstract_texts = json.load(f)
with open(feature_analysis_path, 'r') as f:
feature_analysis = json.load(f)
df_metadata = pd.read_csv(metadata_path)
topk_indices = np.load(topk_indices_path) # Already in int32, no conversion needed
topk_values = np.load(topk_values_path).astype(np.float32)
norms = np.load(norms_path).astype(np.float32)
model_filename = f"{subject}_64_9216.pth"
model_path = os.path.join("data", model_filename)
ae = FastAutoencoder(n_dirs, d_model, k, auxk, multik=0).to(device)
ae.load_state_dict(torch.load(model_path))
ae.eval()
weights = torch.load(model_path)
decoder = weights['decoder.weight'].cpu().numpy()
del weights
with open(family_analysis_path, 'r') as f:
family_analysis = json.load(f)
return {
'abstract_embeddings': abstract_embeddings,
'abstract_texts': abstract_texts,
'feature_analysis': feature_analysis,
'df_metadata': df_metadata,
'topk_indices': topk_indices,
'topk_values': topk_values,
'norms': norms,
'nns_32to64': nns_32to64,
'nns_16to64': nns_16to64,
'ae': ae,
'decoder': decoder,
# 'feature_families': feature_families,
'family_analysis': family_analysis
}
# Load data for both subjects
subject_data = {
'astroPH': load_subject_data('astroPH'),
'csLG': load_subject_data('csLG')
}
# Update existing functions to use the selected subject's data
def get_embedding(text: Optional[str], model: str = EMBEDDING_MODEL) -> Optional[np.ndarray]:
try:
embedding = client.embeddings.create(input=[text], model=model).data[0].embedding
return np.array(embedding, dtype=np.float32)
except Exception as e:
print(f"Error getting embedding: {e}")
return None
def intervened_hidden_to_intervened_embedding(topk_indices, topk_values, ae):
with torch.no_grad():
return ae.decode_sparse(topk_indices, topk_values)
# Function definitions for feature activation, co-occurrence, styling, etc.
def get_feature_activations(subject, feature_index, m=5, min_length=100):
abstract_texts = subject_data[subject]['abstract_texts']
abstract_embeddings = subject_data[subject]['abstract_embeddings']
topk_indices = subject_data[subject]['topk_indices']
topk_values = subject_data[subject]['topk_values']
doc_ids = abstract_texts['doc_ids']
abstracts = abstract_texts['abstracts']
feature_mask = topk_indices == feature_index
activated_indices = np.where(feature_mask.any(axis=1))[0]
activation_values = np.where(feature_mask, topk_values, 0).max(axis=1)
sorted_activated_indices = activated_indices[np.argsort(-activation_values[activated_indices])]
top_m_abstracts = []
top_m_indices = []
for i in sorted_activated_indices:
if len(abstracts[i]) > min_length:
top_m_abstracts.append((doc_ids[i], abstracts[i], activation_values[i]))
top_m_indices.append(i)
if len(top_m_abstracts) == m:
break
return top_m_abstracts
def calculate_co_occurrences(subject, target_index, n_features=9216):
topk_indices = subject_data[subject]['topk_indices']
norms = subject_data[subject]['norms']
mask = np.any(topk_indices == target_index, axis=1)
co_occurring_indices = topk_indices[mask].flatten()
co_occurrences = Counter(co_occurring_indices)
del co_occurrences[target_index]
result = np.zeros(n_features, dtype=np.float32)
result[list(co_occurrences.keys())] = list(co_occurrences.values())
result[list(co_occurrences.keys())] /= np.minimum(norms[list(co_occurrences.keys())], norms[target_index])
return result
def style_dataframe(df: pd.DataFrame, is_top: bool) -> pd.DataFrame:
cosine_values = df['Cosine similarity'].astype(float)
min_val = cosine_values.min()
max_val = cosine_values.max()
def color_similarity(val):
val = float(val)
# Normalize the value between 0 and 1
if is_top:
normalized_val = (val - min_val) / (max_val - min_val)
else:
# For bottom correlated, reverse the normalization
normalized_val = (max_val - val) / (max_val - min_val)
# Adjust the color intensity to avoid zero intensity
color_intensity = 0.2 + (normalized_val * 0.8) # This ensures the range is from 0.2 to 1.0
if is_top:
color = f'background-color: rgba(0, 255, 0, {color_intensity:.2f})'
else:
color = f'background-color: rgba(255, 0, 0, {color_intensity:.2f})'
return color
return df.style.applymap(color_similarity, subset=['Cosine similarity'])
def get_feature_from_index(subject, index):
feature = next((f for f in subject_data[subject]['feature_analysis'] if f['index'] == index), None)
return feature
def visualize_feature(subject, index):
feature = next((f for f in subject_data[subject]['feature_analysis'] if f['index'] == index), None)
if feature is None:
return "Invalid feature index", None, None, None, None, None, None
output = f"# {feature['label']}\n\n"
output += f"* Pearson correlation: {feature['pearson_correlation']:.4f}\n\n"
output += f"* Density: {feature['density']:.4f}\n\n"
# Top m abstracts
top_m_abstracts = get_feature_activations(subject, index)
# Create dataframe for top abstracts with clickable links
df_data = []
for doc_id, abstract, activation_value in top_m_abstracts:
title = abstract.split('\n\n')[0]
title = title.replace('[', '').replace(']', '')
title = title.replace("'", "")
title = title.replace('"', '')
url_id = doc_id.replace('_arXiv.txt', '')
if 'astro-ph' in url_id:
url_id = url_id.split('astro-ph')[1]
url = f"https://arxiv.org/abs/astro-ph/{url_id}"
else:
if '.' in doc_id:
url = f"https://arxiv.org/abs/{url_id}"
else:
url = f"https://arxiv.org/abs/hep-ph/{url_id}"
linked_title = f"[{title}]({url})"
df_data.append({"Title": linked_title, "Activation value": activation_value})
df_top_abstracts = pd.DataFrame(df_data)
styled_top_abstracts = df_top_abstracts.style.format({
"Activation value": "{:.4f}"
})
# Activation value distribution
topk_indices = subject_data[subject]['topk_indices']
topk_values = subject_data[subject]['topk_values']
activation_values = np.where(topk_indices == index, topk_values, 0).max(axis=1)
fig2 = px.histogram(x=activation_values, nbins=50)
fig2.update_layout(
#title=f'{feature["label"]}',
xaxis_title='Activation value',
yaxis_title=None,
yaxis_type='log',
height=220,
)
# Correlated features
decoder = subject_data[subject]['decoder']
feature_vector = decoder[:, index]
decoder_without_feature = np.delete(decoder, index, axis=1)
cosine_similarities = np.dot(feature_vector, decoder_without_feature) / (np.linalg.norm(decoder_without_feature, axis=0) * np.linalg.norm(feature_vector))
topk = 5
topk_indices_cosine = np.argsort(-cosine_similarities)[:topk]
topk_values_cosine = cosine_similarities[topk_indices_cosine]
bottomk = 5
bottomk_indices_cosine = np.argsort(cosine_similarities)[:bottomk]
bottomk_values_cosine = cosine_similarities[bottomk_indices_cosine]
df_top_correlated = pd.DataFrame({
"Feature": [get_feature_from_index(subject, i)['label'] for i in topk_indices_cosine],
"Cosine similarity": topk_values_cosine
})
df_top_correlated_styled = style_dataframe(df_top_correlated, is_top=True)
# Create dataframe for bottom 5 correlated features
df_bottom_correlated = pd.DataFrame({
"Feature": [get_feature_from_index(subject, i)['label'] for i in bottomk_indices_cosine],
"Cosine similarity": bottomk_values_cosine
})
df_bottom_correlated_styled = style_dataframe(df_bottom_correlated, is_top=False)
# Co-occurrences
co_occurrences = calculate_co_occurrences(subject, index)
topk = 5
topk_indices_co_occurrence = np.argsort(-co_occurrences)[:topk]
topk_values_co_occurrence = co_occurrences[topk_indices_co_occurrence]
# Create dataframe for top 5 co-occurring features
df_co_occurrences = pd.DataFrame({
"Feature": [get_feature_from_index(subject, i)['label'] for i in topk_indices_co_occurrence],
"Co-occurrences": topk_values_co_occurrence
})
df_co_occurrences_styled = df_co_occurrences.style.format({
"Co-occurrences": "{:.2f}" # 2 decimal points
})
# Add new code for feature splitting
nns_16to64 = subject_data[subject]['nns_16to64']
nns_32to64 = subject_data[subject]['nns_32to64']
# Get nearest neighbors for 16 and 32
#nn_16 = nns_16to64[str(index)]
# this is really involved it's a lot easier the other direction
nn_16 = []
for key in nns_16to64.keys():
for match in nns_16to64[key]:
if index == match['feature'][0]:
nn_16.append([key, float(match['similarity'])])
#nn_32 = nns_32to64[str(index)]
nn_32 = []
for key in nns_32to64.keys():
for match in nns_32to64[key]:
if index == match['feature'][0]:
nn_32.append([key, float(match['similarity'])])
# Create dataframes for 16 and 32 nearest neighbors
try:
df_16 = pd.DataFrame(nn_16, columns=["Feature", "Cosine Similarity"])
df_16 = df_16.style.format({"Cosine Similarity": "{:.4f}"})
except:
df_16 = pd.DataFrame(["No Match"], columns=["Feature"])
try:
df_32 = pd.DataFrame(nn_32, columns=["Feature", "Cosine Similarity"])
df_32 = df_32.style.format({"Cosine Similarity": "{:.4f}"})
except:
df_32 = pd.DataFrame(["No Match"], columns=["Feature"])
return output, styled_top_abstracts, df_top_correlated_styled, df_bottom_correlated_styled, df_co_occurrences_styled, fig2, df_16, df_32
def create_interactive_directed_graph(family):
matrix = np.array(family['matrix'])
matrix[matrix < 0.07] = 0
densities = family['densities']
for i in range(len(densities)):
for j in range(len(densities)):
if densities[i] < densities[j]:
matrix[i][j] = 0
G = nx.from_numpy_array(matrix, create_using=nx.DiGraph())
num_nodes = len(family['feature_f1'])
all_f1s = family['feature_pearson'] + [family['family_pearson']]
node_info = {i: {"name": f"{family['feature_names'][i]}", "density": family['densities'][i], "pearson": all_f1s[i]} for i in range(num_nodes)}
nx.set_node_attributes(G, node_info)
# Create node trace
node_x = []
node_y = []
node_text = []
node_size = []
node_color = []
pos = nx.spring_layout(G, k = np.sqrt(1/num_nodes) * 3)
for node in G.nodes():
x, y = pos[node]
node_x.append(x)
node_y.append(y)
node_text.append(G.nodes[node]['name'] + "<br>log density: " + str(round(np.log10(G.nodes[node]['density'] + 1e-5), 3)))
node_size.append((np.log10(G.nodes[node]['density'] + 1e-5) + 6) * 10)
node_color.append(G.nodes[node]['pearson'])
node_trace = go.Scatter(
x=node_x, y=node_y,
mode='markers',
hoverinfo='text',
marker=dict(
showscale=True,
colorscale='purples',
size=node_size, # Set node marker size to node['f1']
color=node_color,
cmin = 0,
cmax = 1,
colorbar=dict(
thickness=15,
title='Pearson Correlation',
xanchor='left',
titleside='right',
),
line_width=2,
opacity = 1,),
opacity = 1)
node_trace.text = node_text
# Create edge trace
edge_traces = []
annotations = []
for edge in G.edges():
x0, y0 = pos[edge[0]]
x1, y1 = pos[edge[1]]
weight = matrix[edge[0], edge[1]]
# Calculate offset (adjust this value to move arrows further from or closer to nodes)
offset = 0.00
start_x = x0
start_y = y0
end_x = x1
end_y = y1
# # Calculate new start and end points
# if start_x > end_x:
# start_x = x0 - offset
# end_x = x0 + offset
# else:
# start_x = x0 + offset
# end_x = x1 - offset
# if start_y > end_y:
# start_y = y0 - offset
# end_y = y1 + offset
# else:
# start_y = y0 + offset
# end_y = y1 - offset
edge_trace = go.Scatter(
x=[start_x, end_x, None],
y=[start_y, end_y, None],
line=dict(width=weight * 20, color='#888'), # Multiply weight by 20 for better visibility
hovertext="weight: " + str(round(weight, 3)), # Set the hover text to the edge weight
mode='lines',
line_shape='spline',
opacity = 0.5,
)
edge_traces.append(edge_trace)
annotation = dict(
ax=start_x,
ay=start_y,
x=end_x,
y=end_y,
xref='x',
yref='y',
axref='x',
ayref='y',
showarrow=True,
arrowhead=4,
arrowsize=4, #max(min(weight * 3, 0.3), 2), # Reduced from 30 to 10
arrowwidth=1, # Reduced from 30 to 2
arrowcolor='#999',
opacity = 1,
)
annotations.append(annotation)
annotation_trace = go.Scatter(x=[], y=[], mode='markers', hoverinfo='none', marker=dict(opacity=0))
# Create the figure
fig = go.Figure(data=[annotation_trace, *edge_traces, node_trace],
layout=go.Layout(
showlegend=False,
hovermode='closest',
margin=dict(b=20,l=5,r=5,t=40),
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False)),
)
fig.update_xaxes(showline=False, linewidth=0, gridcolor='white')
fig.update_yaxes(showline=False, linewidth=0, gridcolor='white')
fig.update_layout(
plot_bgcolor='white',
annotations=annotations,
)
return fig
# Modify the main interface function
def create_interface():
custom_css = """
#custom-slider-* {
background-color: #ffe6e6;
}
"""
with gr.Blocks(css=custom_css) as demo:
subject = gr.Dropdown(choices=['astroPH', 'csLG'], label="Select Subject", value='astroPH')
with gr.Tabs():
with gr.Tab("Home"):
gr.Markdown("""
# SAErch: Sparse Autoencoder-enhanced Semantic Search
Welcome to SAErch, an innovative approach to semantic search using Sparse Autoencoders (SAEs) trained on dense text embeddings. This tool builds upon recent advancements in the application of SAEs to language models and embeddings.
## Key Concepts:
1. **Sparse Autoencoders (SAEs)**: Neural networks that learn to reconstruct input data using a sparse set of features, helping to disentangle complex representations. SAEs have shown promising results in uncovering interpretable features in language models.
2. **Feature Families**: Groups of related SAE features that represent concepts at varying levels of abstraction, allowing for multi-scale semantic analysis and manipulation.
3. **Embedding Interventions**: Technique to modify search queries by manipulating specific semantic features identified by the SAE, enabling fine-grained control over query semantics.
## How It Works:
1. SAEs are trained on embeddings from scientific paper abstracts, learning interpretable features that capture various semantic concepts.
2. Users can interact with these features to fine-tune search queries.
3. The system performs semantic search using the modified embeddings, allowing for more precise and controllable results.
## Key References:
- [Towards Monosemanticity: Decomposing Language Models With Dictionary Learning](https://transformer-circuits.pub/2023/monosemantic-features) - Anthropic's pioneering work on applying SAEs to language models.
- [Prism: Mapping Interpretable Concepts and Features in a Latent Space of Language](https://thesephist.com/posts/prism/#caveats-and-limitations) - An early application of SAEs to embeddings, demonstrating their potential for interpretable concept mapping.
- [Scaling and Evaluating Sparse Autoencoders](https://arxiv.org/html/2406.04093v1) - OpenAI's research on scaling SAEs, showcasing the effectiveness of top-k SAEs.
Explore the "SAErch" tab to try out the semantic search capabilities, or dive into the "Feature Visualisation" tab to examine the learned features in more detail.
This tool demonstrates how SAEs can bridge the gap between the semantic richness of dense embeddings and the interpretability of sparse representations, offering new possibilities for precise and explainable semantic search.
""")
with gr.Tab("SAErch"):
input_text = gr.Textbox(label="input")
search_results_state = gr.State([])
feature_values_state = gr.State([])
feature_indices_state = gr.State([])
manually_added_features_state = gr.State([])
def update_search_results(feature_values, feature_indices, manually_added_features, current_subject):
ae = subject_data[current_subject]['ae']
abstract_embeddings = subject_data[current_subject]['abstract_embeddings']
abstract_texts = subject_data[current_subject]['abstract_texts']
df_metadata = subject_data[current_subject]['df_metadata']
# Combine manually added features with query-generated features
all_indices = []
all_values = []
# Add manually added features first
for index in manually_added_features:
if index not in all_indices:
all_indices.append(index)
all_values.append(feature_values[feature_indices.index(index)] if index in feature_indices else 0.0)
# Add remaining query-generated features
for index, value in zip(feature_indices, feature_values):
if index not in all_indices:
all_indices.append(index)
all_values.append(value)
# Reconstruct query embedding
topk_indices = torch.tensor(all_indices).to(device)
topk_values = torch.tensor(all_values).to(device)
intervened_embedding = intervened_hidden_to_intervened_embedding(topk_indices, topk_values, ae)
intervened_embedding = intervened_embedding.cpu().numpy().flatten()
# Perform similarity search
sims = np.dot(abstract_embeddings, intervened_embedding)
topk_indices_search = np.argsort(sims)[::-1][:10]
doc_ids = abstract_texts['doc_ids']
topk_doc_ids = [doc_ids[i] for i in topk_indices_search]
# Prepare search results
search_results = []
for doc_id in topk_doc_ids:
metadata = df_metadata[df_metadata['arxiv_id'] == doc_id].iloc[0]
title = metadata['title'].replace('[', '').replace(']', '')
title = title.replace("'", "")
url_id = doc_id.replace('_arXiv.txt', '')
if 'astro-ph' in url_id:
url_id = url_id.split('astro-ph')[1]
url = f"https://arxiv.org/abs/astro-ph/{url_id}"
else:
if '.' in doc_id:
url = f"https://arxiv.org/abs/{doc_id.replace('_arXiv.txt', '')}"
else:
url = f"https://arxiv.org/abs/hep-ph/{doc_id.replace('_arXiv.txt', '')}"
linked_title = f"[{title}]({url})"
search_results.append([
linked_title,
int(metadata['citation_count']),
int(metadata['year'])
])
# Convert search_results to a DataFrame and apply styling
df_search_results = pd.DataFrame(search_results, columns=["Title", "Citation Count", "Year"])
styled_search_results = df_search_results.style.format({
"Citation Count": "{:.0f}", # Keep as integer
"Year": "{:.0f}" # Keep as integer
})
return styled_search_results, all_values, all_indices
@gr.render(inputs=[input_text, search_results_state, feature_values_state, feature_indices_state, manually_added_features_state, subject])
def show_components(text, search_results, feature_values, feature_indices, manually_added_features, current_subject):
if len(text) == 0:
return gr.Markdown("## No Input Provided")
if not search_results or text != getattr(show_components, 'last_query', None):
show_components.last_query = text
query_embedding = get_embedding(text)
ae = subject_data[current_subject]['ae']
with torch.no_grad():
recons, z_dict = ae(torch.tensor(query_embedding).unsqueeze(0).to(device))
topk_indices = z_dict['topk_indices'][0].cpu().numpy()
topk_values = z_dict['topk_values'][0].cpu().numpy()
feature_values = topk_values.tolist()
feature_indices = topk_indices.tolist()
search_results, feature_values, feature_indices = update_search_results(feature_values, feature_indices, manually_added_features, current_subject)
with gr.Row():
with gr.Column(scale=2):
df = gr.Dataframe(
headers=["Title", "Citation Count", "Year"],
value=search_results,
label="Top 10 Search Results",
datatype=["markdown", "number", "number"], # Add this line
wrap=True # Add this line to ensure long titles don't get cut off
)
feature_search = gr.Textbox(label="Search Feature Labels")
feature_matches = gr.CheckboxGroup(label="Matching Features", choices=[])
add_button = gr.Button("Add Selected Features")
# def search_feature_labels(search_text):
# if not search_text:
# return gr.CheckboxGroup(choices=[])
# matches = [f for f in subject_data[current_subject]['feature_analysis'] if search_text.lower() in f['label'].lower()]
# matches = sorted(matches, key=lambda x: x['pearson_correlation'], reverse=True)
# matches = [f"{f['label']} ({f['index']})" for f in matches]
# return gr.CheckboxGroup(choices=matches[:10])
def search_feature_labels(search_text):
if not search_text:
return gr.CheckboxGroup(choices=[])
matches = [f for f in subject_data[current_subject]['feature_analysis'] if search_text.lower() in f['label'].lower()]
for match in matches:
if math.isnan(match['pearson_correlation']):
match['pearson_correlation'] = 0
matches = sorted(matches, key=lambda x: x['pearson_correlation'], reverse=True)
matches = [f"{f['label']} ({f['index']})" for f in matches]
return gr.CheckboxGroup(choices=matches[:10])
feature_search.change(search_feature_labels, inputs=[feature_search], outputs=[feature_matches])
def on_add_features(selected_features, current_values, current_indices, manually_added_features):
if selected_features:
new_indices = [int(f.split('(')[-1].strip(')')) for f in selected_features]
# Add new indices to manually_added_features if they're not already there
manually_added_features = list(dict.fromkeys(manually_added_features + new_indices))
return gr.CheckboxGroup(value=[]), current_values, current_indices, manually_added_features
return gr.CheckboxGroup(value=[]), current_values, current_indices, manually_added_features
add_button.click(
on_add_features,
inputs=[feature_matches, feature_values_state, feature_indices_state, manually_added_features_state],
outputs=[feature_matches, feature_values_state, feature_indices_state, manually_added_features_state]
)
with gr.Column(scale=1):
update_button = gr.Button("Update Results")
sliders = []
for i, (value, index) in enumerate(zip(feature_values, feature_indices)):
feature = next((f for f in subject_data[current_subject]['feature_analysis'] if f['index'] == index), None)
label = f"{feature['label']} ({index})" if feature else f"Feature {index}"
# Transform the value to a 0-1 range
transformed_value = max(0.01, min(1, value)) # Ensure value is between 0.01 and 1
linear_value = (np.log10(transformed_value) + 2) / 2 # Map 0.01-1 to 0-1
# Add prefix and change color for manually added features
if index in manually_added_features:
label = f"[Custom] {label}"
slider = gr.Slider(minimum=0, maximum=1, step=0.01, value=linear_value, label=label, key=f"slider-{index}", elem_id=f"custom-slider-{index}")
else:
slider = gr.Slider(minimum=0, maximum=1, step=0.01, value=linear_value, label=label, key=f"slider-{index}")
sliders.append(slider)
def on_slider_change(*values):
manually_added_features = values[-1]
slider_values = list(values[:-1])
# Transform slider values back to original scale
transformed_values = [10 ** ((2 * float(v)) - 2) for v in slider_values]
# Reconstruct feature_indices based on the order of sliders
reconstructed_indices = [int(slider.label.split('(')[-1].split(')')[0]) for slider in sliders]
new_results, new_values, new_indices = update_search_results(transformed_values, reconstructed_indices, manually_added_features, current_subject)
return new_results, new_values, new_indices, manually_added_features
update_button.click(
on_slider_change,
inputs=sliders + [manually_added_features_state],
outputs=[search_results_state, feature_values_state, feature_indices_state, manually_added_features_state]
)
return [df, feature_search, feature_matches, add_button, update_button] + sliders
with gr.Tab("Feature Visualisation"):
gr.Markdown("# Feature Visualiser")
with gr.Tabs():
with gr.Tab("Individual Features"):
with gr.Row():
feature_search = gr.Textbox(label="Search Feature Labels")
feature_matches = gr.CheckboxGroup(label="Matching Features", choices=[])
visualize_button = gr.Button("Visualize Feature")
feature_info = gr.Markdown()
abstracts_heading = gr.Markdown("## Top 5 Abstracts")
top_abstracts = gr.Dataframe(
headers=["Title", "Activation value"],
datatype=["markdown", "number"],
interactive=False,
wrap=True
)
gr.Markdown("## Feature Splitting")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Best Match in SAE16")
nn_16_table = gr.Dataframe(
headers=["Feature", "Cosine Similarity"],
interactive=False
)
with gr.Column(scale=1):
gr.Markdown("### Best Match in SAE32")
nn_32_table = gr.Dataframe(
headers=["Feature", "Cosine Similarity"],
interactive=False
)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("## Top Co-occurring Features")
co_occurring_features = gr.Dataframe(
headers=["Feature", "Co-occurrences"],
interactive=False
)
with gr.Column(scale=1):
gr.Markdown(f"## Activation Value Distribution")
activation_dist = gr.Plot()
gr.Markdown("## Correlated Features")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Top Correlated Features")
top_correlated = gr.Dataframe(
headers=["Feature", "Cosine similarity"],
interactive=False
)
with gr.Column(scale=1):
gr.Markdown("### Bottom Correlated Features")
bottom_correlated = gr.Dataframe(
headers=["Feature", "Cosine similarity"],
interactive=False
)
# def search_feature_labels(search_text, current_subject):
# if not search_text:
# return gr.CheckboxGroup(choices=[])
# matches = [f for f in subject_data[current_subject]['feature_analysis'] if search_text.lower() in f['label'].lower()]
# matches = sorted(matches, key=lambda x: x['pearson_correlation'], reverse=True)
# matches = [f"{f['label']} ({f['index']})" for f in matches]
# return gr.CheckboxGroup(choices=matches[:10])
def search_feature_labels(search_text, current_subject):
if not search_text:
return gr.CheckboxGroup(choices=[])
matches = [f for f in subject_data[current_subject]['feature_analysis'] if search_text.lower() in f['label'].lower()]
for match in matches:
if math.isnan(match['pearson_correlation']):
match['pearson_correlation'] = 0
matches = sorted(matches, key=lambda x: x['pearson_correlation'], reverse=True)
matches = [f"{f['label']} ({f['index']})" for f in matches]
return gr.CheckboxGroup(choices=matches[:10])
feature_search.change(search_feature_labels, inputs=[feature_search, subject], outputs=[feature_matches])
def on_visualize(selected_features, current_subject):
if not selected_features:
return "Please select a feature to visualize.", None, None, None, None, None, "", []
# Extract the feature index from the selected feature string
feature_index = int(selected_features[0].split('(')[-1].strip(')'))
feature_info, top_abstracts, top_correlated, bottom_correlated, co_occurring_features, activation_dist, nn_16, nn_32 = visualize_feature(current_subject, feature_index)
# Return the visualization results along with empty values for search box and checkbox
return feature_info, top_abstracts, top_correlated, bottom_correlated, co_occurring_features, activation_dist, "", [], nn_16, nn_32
visualize_button.click(
on_visualize,
inputs=[feature_matches, subject],
outputs=[feature_info, top_abstracts, top_correlated, bottom_correlated, co_occurring_features, activation_dist, feature_search, feature_matches, nn_16_table, nn_32_table]
)
with gr.Tab("Feature Families"):
gr.Markdown("# Feature Families")
with gr.Row():
family_search = gr.Textbox(label="Search Feature Families")
family_matches = gr.CheckboxGroup(label="Matching Feature Families", choices=[])
visualize_family_button = gr.Button("Visualize Feature Family")
family_dataframe = gr.Dataframe(
headers=["Feature", "Parent Co-Occurrence", "F1 Score", "Pearson"],
datatype=["markdown", "number", "number", "number"],
label="Family and Child Features"
)
gr.Markdown("# Family Graph")
graph_plot = gr.Plot(label="Directed Graph")
# family_info = gr.Markdown()
# def search_feature_families(search_text, current_subject):
# family_analysis = subject_data[current_subject]['family_analysis']
# if not search_text:
# return gr.CheckboxGroup(choices=[])
# matches = [family for family in family_analysis if search_text.lower() in family['superfeature'].lower()]
# matches = sorted(matches, key=lambda x: x['family_pearson'], reverse=True)
# matches = [family['superfeature'] for family in matches]
# matches = list(dict.fromkeys(matches))
# return gr.CheckboxGroup(choices=matches[:10]) # Limit to top 10 matches
def search_feature_families(search_text, current_subject):
family_analysis = subject_data[current_subject]['family_analysis']
if not search_text:
return gr.CheckboxGroup(choices=[])
matches = [family for family in family_analysis if search_text.lower() in family['superfeature'].lower()]
for family in matches:
if math.isnan(family['family_pearson']):
family['family_pearson'] = 0
matches = sorted(matches, key=lambda x: x['family_pearson'], reverse=True)
matches = [family['superfeature'] for family in matches]
matches = list(dict.fromkeys(matches))
return gr.CheckboxGroup(choices=matches[:10]) # Limit to top 10 matches
def visualize_feature_family(selected_families, current_subject):
if not selected_families:
return "Please select a feature family to visualize.", None, "", []
selected_family = selected_families[0] # Take the first selected family
family_analysis = subject_data[current_subject]['family_analysis']
family_data = next((family for family in family_analysis if family['superfeature'] == selected_family), None)
if not family_data:
return "Invalid feature family selected.", None, "", []
output = f"# {family_data['superfeature']}\n\n"
# Create DataFrame
df_data = [
{
"Feature": f"## {family_data['superfeature']}",
"Parent Co-Occurrence": 1,
"F1 Score": round(family_data['family_f1'], 2),
"Pearson": round(family_data['family_pearson'], 4)
},
]
coocs = np.array(family_data['matrix'])[:, -1]
# print(coocs)
for name, cooc, f1, pearson in zip(family_data['feature_names'], coocs, family_data['feature_f1'], family_data['feature_pearson']):
df_data.append({
"Feature": name,
"Parent Co-Occurrence": round(cooc, 2),
"F1 Score": round(f1, 2),
"Pearson": round(pearson, 4)
})
df = pd.DataFrame(df_data)
# Add super reasoning below the dataframe
output += "## Super Reasoning\n"
output += f"{family_data['super_reasoning']}\n\n"
graph = create_interactive_directed_graph(family_data)
#return output, df, "", [], graph # Return empty string for search box and empty list for checkbox
return df, "", [], graph
family_search.change(search_feature_families, inputs=[family_search, subject], outputs=[family_matches])
visualize_family_button.click(
visualize_feature_family,
inputs=[family_matches, subject],
#outputs=[family_info, family_dataframe, family_search, family_matches, graph_plot]
outputs=[family_dataframe, family_search, family_matches, graph_plot]
)
# Add logic to update components when subject changes
def on_subject_change(new_subject):
# Clear all states and return empty values for all components
return [], [], [], [], "", [], "", [], None, None, None, None, None, None
subject.change(
on_subject_change,
inputs=[subject],
outputs=[search_results_state, feature_values_state, feature_indices_state, manually_added_features_state,
input_text, feature_matches, feature_search, feature_matches,
feature_info, top_abstracts, top_correlated, bottom_correlated, co_occurring_features, activation_dist]
)
return demo
# Launch the interface
if __name__ == "__main__":
demo = create_interface()
demo.launch()
|