saerch.ai / topk_sae.py
charlieoneill's picture
Update topk_sae.py
10845f0 verified
raw
history blame
6.1 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from torch.utils.data import DataLoader, TensorDataset
from tqdm import tqdm
import os
import glob
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class FastAutoencoder(nn.Module):
def __init__(self, n_dirs: int, d_model: int, k: int, auxk: int, multik: int, dead_steps_threshold: int = 266):
super().__init__()
self.n_dirs = n_dirs
self.d_model = d_model
self.k = k
self.auxk = auxk
self.multik = multik
self.dead_steps_threshold = dead_steps_threshold
self.encoder = nn.Linear(d_model, n_dirs, bias=False)
self.decoder = nn.Linear(n_dirs, d_model, bias=False)
self.pre_bias = nn.Parameter(torch.zeros(d_model))
self.latent_bias = nn.Parameter(torch.zeros(n_dirs))
self.stats_last_nonzero = torch.zeros(n_dirs, dtype=torch.long, device=device)
def forward(self, x):
x = x - self.pre_bias
latents_pre_act = self.encoder(x) + self.latent_bias
# Main top-k selection
topk_values, topk_indices = torch.topk(latents_pre_act, k=self.k, dim=-1)
topk_values = F.relu(topk_values)
multik_values, multik_indices = torch.topk(latents_pre_act, k=4*self.k, dim=-1)
multik_values = F.relu(multik_values)
latents = torch.zeros_like(latents_pre_act)
latents.scatter_(-1, topk_indices, topk_values)
multik_latents = torch.zeros_like(latents_pre_act)
multik_latents.scatter_(-1, multik_indices, multik_values)
# Update stats_last_nonzero
self.stats_last_nonzero += 1
self.stats_last_nonzero.scatter_(0, topk_indices.unique(), 0)
recons = self.decoder(latents) + self.pre_bias
multik_recons = self.decoder(multik_latents) + self.pre_bias
# AuxK
if self.auxk is not None:
# Create dead latents mask
dead_mask = (self.stats_last_nonzero > self.dead_steps_threshold).float()
# Apply mask to latents_pre_act
dead_latents_pre_act = latents_pre_act * dead_mask
# Select top-k_aux from dead latents
auxk_values, auxk_indices = torch.topk(dead_latents_pre_act, k=self.auxk, dim=-1)
auxk_values = F.relu(auxk_values)
else:
auxk_values, auxk_indices = None, None
return recons, {
"topk_indices": topk_indices,
"topk_values": topk_values,
"multik_indices": multik_indices,
"multik_values": multik_values,
"multik_recons": multik_recons,
"auxk_indices": auxk_indices,
"auxk_values": auxk_values,
"latents_pre_act": latents_pre_act,
"latents_post_act": latents,
}
def decode_sparse(self, indices, values):
latents = torch.zeros(self.n_dirs, device=indices.device)
latents.scatter_(-1, indices, values)
return self.decoder(latents) + self.pre_bias
# def decode_sparse(self, indices, values):
# latents = torch.zeros(1, self.n_dirs, device=indices.device, dtype=torch.float32)
# latents.scatter_(-1, indices.unsqueeze(0), values.unsqueeze(0))
# return self.decoder(latents.squeeze(0)) + self.pre_bias
def print_tensor_info(self, tensor, name):
print(f"{name} - Shape: {tensor.shape}, Dtype: {tensor.dtype}, Device: {tensor.device}")
def decode_clamp(self, latents, clamp):
topk_values, topk_indices = torch.topk(latents, k = 64, dim=-1)
topk_values = F.relu(topk_values)
latents = torch.zeros_like(latents)
latents.scatter_(-1, topk_indices, topk_values)
# multiply latents by clamp, which is 1D but has has the same size as each latent vector
latents = latents * clamp
return self.decoder(latents) + self.pre_bias
def decode_at_k(self, latents, k):
topk_values, topk_indices = torch.topk(latents, k=k, dim=-1)
topk_values = F.relu(topk_values)
latents = torch.zeros_like(latents)
latents.scatter_(-1, topk_indices, topk_values)
return self.decoder(latents) + self.pre_bias
def unit_norm_decoder_(autoencoder: FastAutoencoder) -> None:
with torch.no_grad():
autoencoder.decoder.weight.div_(autoencoder.decoder.weight.norm(dim=0, keepdim=True))
def unit_norm_decoder_grad_adjustment_(autoencoder: FastAutoencoder) -> None:
if autoencoder.decoder.weight.grad is not None:
with torch.no_grad():
proj = torch.sum(autoencoder.decoder.weight * autoencoder.decoder.weight.grad, dim=0, keepdim=True)
autoencoder.decoder.weight.grad.sub_(proj * autoencoder.decoder.weight)
def mse(output, target):
return F.mse_loss(output, target)
def normalized_mse(recon, xs):
return mse(recon, xs) / mse(xs.mean(dim=0, keepdim=True).expand_as(xs), xs)
def loss_fn(ae, x, recons, info, auxk_coef, multik_coef):
recons_loss = normalized_mse(recons, x)
recons_loss += multik_coef * normalized_mse(info["multik_recons"], x)
if ae.auxk is not None:
e = x - recons.detach() # reconstruction error
auxk_latents = torch.zeros_like(info["latents_pre_act"])
auxk_latents.scatter_(-1, info["auxk_indices"], info["auxk_values"])
e_hat = ae.decoder(auxk_latents) # reconstruction of error using dead latents
auxk_loss = normalized_mse(e_hat, e)
total_loss = recons_loss + auxk_coef * auxk_loss
else:
auxk_loss = torch.tensor(0.0, device=device)
total_loss = recons_loss
return total_loss, recons_loss, auxk_loss
def init_from_data_(ae, data_sample):
# set pre_bias to median of data
ae.pre_bias.data = torch.median(data_sample, dim=0).values
nn.init.xavier_uniform_(ae.decoder.weight)
# decoder is unit norm
unit_norm_decoder_(ae)
# encoder as transpose of decoder
ae.encoder.weight.data = ae.decoder.weight.t().clone()
nn.init.zeros_(ae.latent_bias)