Spaces:
Running
Running
import gradio as gr | |
import numpy as np | |
import json | |
import pandas as pd | |
from openai import OpenAI | |
import yaml | |
from typing import Optional, List, Dict, Tuple, Any | |
from topk_sae import FastAutoencoder | |
import torch | |
import plotly.express as px | |
from collections import Counter | |
from huggingface_hub import hf_hub_download | |
import os | |
import os | |
print(os.getenv('MODEL_REPO_ID')) | |
# Constants | |
EMBEDDING_MODEL = "text-embedding-3-small" | |
d_model = 1536 | |
n_dirs = d_model * 6 | |
k = 64 | |
auxk = 128 | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
torch.set_grad_enabled(False) | |
# Function to download all necessary files | |
def download_all_files(): | |
files_to_download = [ | |
"astroPH_paper_metadata.csv", | |
"csLG_feature_analysis_results_64.json", | |
"astroPH_topk_indices_64_9216_int32.npy", | |
"astroPH_64_9216.pth", | |
"astroPH_topk_values_64_9216_float16.npy", | |
"csLG_abstract_texts.json", | |
"csLG_topk_values_64_9216_float16.npy", | |
"csLG_abstract_embeddings_float16.npy", | |
"csLG_paper_metadata.csv", | |
"csLG_64_9216.pth", | |
"astroPH_abstract_texts.json", | |
"astroPH_feature_analysis_results_64.json", | |
"csLG_topk_indices_64_9216_int32.npy", | |
"astroPH_abstract_embeddings_float16.npy" | |
] | |
for file in files_to_download: | |
local_path = os.path.join("data", file) | |
os.makedirs(os.path.dirname(local_path), exist_ok=True) | |
hf_hub_download(repo_id="charlieoneill/saerch-ai-data", filename=file, local_dir="data") | |
print(f"Downloaded {file}") | |
# Load configuration and initialize OpenAI client | |
download_all_files() | |
# config = yaml.safe_load(open('../config.yaml', 'r')) | |
# client = OpenAI(api_key=config['jwu_openai_key']) | |
# Load the API key from the environment variable | |
api_key = os.getenv('openai_key') | |
# Ensure the API key is set | |
if not api_key: | |
raise ValueError("The environment variable 'openai_key' is not set.") | |
# Initialize the OpenAI client with the API key | |
client = OpenAI(api_key=api_key) | |
# Function to load data for a specific subject | |
def load_subject_data(subject): | |
# embeddings_path = f"data/{subject}_abstract_embeddings.npy" | |
# texts_path = f"data/{subject}_abstract_texts.json" | |
# feature_analysis_path = f"data/{subject}_feature_analysis_results_{k}.json" | |
# metadata_path = f'data/{subject}_paper_metadata.csv' | |
# topk_indices_path = f"data/{subject}_topk_indices_{k}_{n_dirs}.npy" | |
# topk_values_path = f"data/{subject}_topk_values_{k}_{n_dirs}.npy" | |
embeddings_path = f"data/{subject}_abstract_embeddings_float16.npy" | |
texts_path = f"data/{subject}_abstract_texts.json" | |
feature_analysis_path = f"data/{subject}_feature_analysis_results_{k}.json" | |
metadata_path = f'data/{subject}_paper_metadata.csv' | |
topk_indices_path = f"data/{subject}_topk_indices_{k}_{n_dirs}_int32.npy" | |
topk_values_path = f"data/{subject}_topk_values_{k}_{n_dirs}_float16.npy" | |
# abstract_embeddings = np.load(embeddings_path) | |
# with open(texts_path, 'r') as f: | |
# abstract_texts = json.load(f) | |
# with open(feature_analysis_path, 'r') as f: | |
# feature_analysis = json.load(f) | |
# df_metadata = pd.read_csv(metadata_path) | |
# topk_indices = np.load(topk_indices_path) | |
# topk_values = np.load(topk_values_path) | |
abstract_embeddings = np.load(embeddings_path).astype(np.float32) # Load float16 and convert to float32 | |
with open(texts_path, 'r') as f: | |
abstract_texts = json.load(f) | |
with open(feature_analysis_path, 'r') as f: | |
feature_analysis = json.load(f) | |
df_metadata = pd.read_csv(metadata_path) | |
topk_indices = np.load(topk_indices_path) # Already in int32, no conversion needed | |
topk_values = np.load(topk_values_path).astype(np.float32) | |
model_filename = f"{subject}_64_9216.pth" | |
model_path = os.path.join("data", model_filename) | |
ae = FastAutoencoder(n_dirs, d_model, k, auxk, multik=0).to(device) | |
ae.load_state_dict(torch.load(model_path)) | |
ae.eval() | |
weights = torch.load(model_path) | |
decoder = weights['decoder.weight'].cpu().numpy() | |
del weights | |
return { | |
'abstract_embeddings': abstract_embeddings, | |
'abstract_texts': abstract_texts, | |
'feature_analysis': feature_analysis, | |
'df_metadata': df_metadata, | |
'topk_indices': topk_indices, | |
'topk_values': topk_values, | |
'ae': ae, | |
'decoder': decoder | |
} | |
# Load data for both subjects | |
subject_data = { | |
'astroPH': load_subject_data('astroPH'), | |
'csLG': load_subject_data('csLG') | |
} | |
# Update existing functions to use the selected subject's data | |
def get_embedding(text: Optional[str], model: str = EMBEDDING_MODEL) -> Optional[np.ndarray]: | |
try: | |
embedding = client.embeddings.create(input=[text], model=model).data[0].embedding | |
return np.array(embedding, dtype=np.float32) | |
except Exception as e: | |
print(f"Error getting embedding: {e}") | |
return None | |
def intervened_hidden_to_intervened_embedding(topk_indices, topk_values, ae): | |
with torch.no_grad(): | |
return ae.decode_sparse(topk_indices, topk_values) | |
# Function definitions for feature activation, co-occurrence, styling, etc. | |
def get_feature_activations(subject, feature_index, m=5, min_length=100): | |
abstract_texts = subject_data[subject]['abstract_texts'] | |
abstract_embeddings = subject_data[subject]['abstract_embeddings'] | |
topk_indices = subject_data[subject]['topk_indices'] | |
topk_values = subject_data[subject]['topk_values'] | |
doc_ids = abstract_texts['doc_ids'] | |
abstracts = abstract_texts['abstracts'] | |
feature_mask = topk_indices == feature_index | |
activated_indices = np.where(feature_mask.any(axis=1))[0] | |
activation_values = np.where(feature_mask, topk_values, 0).max(axis=1) | |
sorted_activated_indices = activated_indices[np.argsort(-activation_values[activated_indices])] | |
top_m_abstracts = [] | |
top_m_indices = [] | |
for i in sorted_activated_indices: | |
if len(abstracts[i]) > min_length: | |
top_m_abstracts.append((doc_ids[i], abstracts[i], activation_values[i])) | |
top_m_indices.append(i) | |
if len(top_m_abstracts) == m: | |
break | |
return top_m_abstracts | |
def calculate_co_occurrences(subject, target_index, n_features=9216): | |
topk_indices = subject_data[subject]['topk_indices'] | |
mask = np.any(topk_indices == target_index, axis=1) | |
co_occurring_indices = topk_indices[mask].flatten() | |
co_occurrences = Counter(co_occurring_indices) | |
del co_occurrences[target_index] | |
result = np.zeros(n_features, dtype=int) | |
result[list(co_occurrences.keys())] = list(co_occurrences.values()) | |
return result | |
def style_dataframe(df: pd.DataFrame, is_top: bool) -> pd.DataFrame: | |
cosine_values = df['Cosine similarity'].astype(float) | |
min_val = cosine_values.min() | |
max_val = cosine_values.max() | |
def color_similarity(val): | |
val = float(val) | |
# Normalize the value between 0 and 1 | |
if is_top: | |
normalized_val = (val - min_val) / (max_val - min_val) | |
else: | |
# For bottom correlated, reverse the normalization | |
normalized_val = (max_val - val) / (max_val - min_val) | |
# Adjust the color intensity to avoid zero intensity | |
color_intensity = 0.2 + (normalized_val * 0.8) # This ensures the range is from 0.2 to 1.0 | |
if is_top: | |
color = f'background-color: rgba(0, 255, 0, {color_intensity:.2f})' | |
else: | |
color = f'background-color: rgba(255, 0, 0, {color_intensity:.2f})' | |
return color | |
return df.style.applymap(color_similarity, subset=['Cosine similarity']) | |
def get_feature_from_index(subject, index): | |
feature = next((f for f in subject_data[subject]['feature_analysis'] if f['index'] == index), None) | |
return feature | |
def visualize_feature(subject, index): | |
feature = next((f for f in subject_data[subject]['feature_analysis'] if f['index'] == index), None) | |
if feature is None: | |
return "Invalid feature index", None, None, None, None, None, None | |
output = f"# {feature['label']}\n\n" | |
output += f"* Pearson correlation: {feature['pearson_correlation']:.4f}\n\n" | |
output += f"* Density: {feature['density']:.4f}\n\n" | |
# Top m abstracts | |
top_m_abstracts = get_feature_activations(subject, index) | |
# Create dataframe for top abstracts | |
df_data = [ | |
{"Title": m[1].split('\n\n')[0], "Activation value": f"{m[2]:.4f}"} | |
for m in top_m_abstracts | |
] | |
df_top_abstracts = pd.DataFrame(df_data) | |
# Activation value distribution | |
topk_indices = subject_data[subject]['topk_indices'] | |
topk_values = subject_data[subject]['topk_values'] | |
activation_values = np.where(topk_indices == index, topk_values, 0).max(axis=1) | |
fig2 = px.histogram(x=activation_values, nbins=50) | |
fig2.update_layout( | |
#title=f'{feature["label"]}', | |
xaxis_title='Activation value', | |
yaxis_title=None, | |
yaxis_type='log', | |
height=220, | |
) | |
# Correlated features | |
decoder = subject_data[subject]['decoder'] | |
feature_vector = decoder[:, index] | |
decoder_without_feature = np.delete(decoder, index, axis=1) | |
cosine_similarities = np.dot(feature_vector, decoder_without_feature) / (np.linalg.norm(decoder_without_feature, axis=0) * np.linalg.norm(feature_vector)) | |
topk = 5 | |
topk_indices_cosine = np.argsort(-cosine_similarities)[:topk] | |
topk_values_cosine = cosine_similarities[topk_indices_cosine] | |
# Create dataframe for top 5 correlated features | |
df_top_correlated = pd.DataFrame({ | |
"Feature": [get_feature_from_index(subject, i)['label'] for i in topk_indices_cosine], | |
"Cosine similarity": [f"{v:.4f}" for v in topk_values_cosine] | |
}) | |
df_top_correlated_styled = style_dataframe(df_top_correlated, is_top=True) | |
bottomk = 5 | |
bottomk_indices_cosine = np.argsort(cosine_similarities)[:bottomk] | |
bottomk_values_cosine = cosine_similarities[bottomk_indices_cosine] | |
# Create dataframe for bottom 5 correlated features | |
df_bottom_correlated = pd.DataFrame({ | |
"Feature": [get_feature_from_index(subject, i)['label'] for i in bottomk_indices_cosine], | |
"Cosine similarity": [f"{v:.4f}" for v in bottomk_values_cosine] | |
}) | |
df_bottom_correlated_styled = style_dataframe(df_bottom_correlated, is_top=False) | |
# Co-occurrences | |
co_occurrences = calculate_co_occurrences(subject, index) | |
topk = 5 | |
topk_indices_co_occurrence = np.argsort(-co_occurrences)[:topk] | |
topk_values_co_occurrence = co_occurrences[topk_indices_co_occurrence] | |
# Create dataframe for top 5 co-occurring features | |
df_co_occurrences = pd.DataFrame({ | |
"Feature": [get_feature_from_index(subject, i)['label'] for i in topk_indices_co_occurrence], | |
"Co-occurrences": topk_values_co_occurrence | |
}) | |
return output, df_top_abstracts, df_top_correlated_styled, df_bottom_correlated_styled, df_co_occurrences, fig2 | |
# Modify the main interface function | |
def create_interface(): | |
custom_css = """ | |
#custom-slider-* { | |
background-color: #ffe6e6; | |
} | |
""" | |
with gr.Blocks(css=custom_css) as demo: | |
subject = gr.Dropdown(choices=['astroPH', 'csLG'], label="Select Subject", value='astroPH') | |
with gr.Tabs(): | |
with gr.Tab("Home"): | |
gr.Markdown(""" | |
# SAErch: Sparse Autoencoder-enhanced Semantic Search | |
Welcome to SAErch, an innovative approach to semantic search using Sparse Autoencoders (SAEs) trained on dense text embeddings. | |
## Key Concepts: | |
1. **Sparse Autoencoders (SAEs)**: Neural networks that learn to reconstruct input data using a sparse set of features, helping to disentangle complex representations. | |
2. **Feature Families**: Groups of related SAE features that represent concepts at varying levels of abstraction. | |
3. **Embedding Interventions**: Technique to modify search queries by manipulating specific semantic features identified by the SAE. | |
## How It Works: | |
1. SAEs are trained on embeddings from scientific paper abstracts. | |
2. The SAE learns interpretable features that capture various semantic concepts. | |
3. Users can interact with these features to fine-tune search queries. | |
4. The system performs semantic search using the modified embeddings. | |
Explore the "SAErch" tab to try out the semantic search capabilities, or dive into the "Feature Visualisation" tab to examine the learned features in more detail. | |
This tool demonstrates how SAEs can bridge the gap between the semantic richness of dense embeddings and the interpretability of sparse representations, offering new possibilities for precise and explainable semantic search. | |
""") | |
with gr.Tab("SAErch"): | |
input_text = gr.Textbox(label="input") | |
search_results_state = gr.State([]) | |
feature_values_state = gr.State([]) | |
feature_indices_state = gr.State([]) | |
manually_added_features_state = gr.State([]) | |
def update_search_results(feature_values, feature_indices, manually_added_features, current_subject): | |
ae = subject_data[current_subject]['ae'] | |
abstract_embeddings = subject_data[current_subject]['abstract_embeddings'] | |
abstract_texts = subject_data[current_subject]['abstract_texts'] | |
df_metadata = subject_data[current_subject]['df_metadata'] | |
# Combine manually added features with query-generated features | |
all_indices = [] | |
all_values = [] | |
# Add manually added features first | |
for index in manually_added_features: | |
if index not in all_indices: | |
all_indices.append(index) | |
all_values.append(feature_values[feature_indices.index(index)] if index in feature_indices else 0.0) | |
# Add remaining query-generated features | |
for index, value in zip(feature_indices, feature_values): | |
if index not in all_indices: | |
all_indices.append(index) | |
all_values.append(value) | |
# Reconstruct query embedding | |
topk_indices = torch.tensor(all_indices).to(device) | |
topk_values = torch.tensor(all_values).to(device) | |
intervened_embedding = intervened_hidden_to_intervened_embedding(topk_indices, topk_values, ae) | |
intervened_embedding = intervened_embedding.cpu().numpy().flatten() | |
# Perform similarity search | |
sims = np.dot(abstract_embeddings, intervened_embedding) | |
topk_indices_search = np.argsort(sims)[::-1][:10] | |
doc_ids = abstract_texts['doc_ids'] | |
topk_doc_ids = [doc_ids[i] for i in topk_indices_search] | |
# Prepare search results | |
search_results = [] | |
for doc_id in topk_doc_ids: | |
metadata = df_metadata[df_metadata['arxiv_id'] == doc_id].iloc[0] | |
title = metadata['title'].replace('[', '').replace(']', '') | |
search_results.append([ | |
title, | |
int(metadata['citation_count']), | |
int(metadata['year']) | |
]) | |
return search_results, all_values, all_indices | |
def show_components(text, search_results, feature_values, feature_indices, manually_added_features, current_subject): | |
if len(text) == 0: | |
return gr.Markdown("## No Input Provided") | |
if not search_results or text != getattr(show_components, 'last_query', None): | |
show_components.last_query = text | |
query_embedding = get_embedding(text) | |
ae = subject_data[current_subject]['ae'] | |
with torch.no_grad(): | |
recons, z_dict = ae(torch.tensor(query_embedding).unsqueeze(0).to(device)) | |
topk_indices = z_dict['topk_indices'][0].cpu().numpy() | |
topk_values = z_dict['topk_values'][0].cpu().numpy() | |
feature_values = topk_values.tolist() | |
feature_indices = topk_indices.tolist() | |
search_results, feature_values, feature_indices = update_search_results(feature_values, feature_indices, manually_added_features, current_subject) | |
with gr.Row(): | |
with gr.Column(scale=2): | |
df = gr.Dataframe( | |
headers=["Title", "Citation Count", "Year"], | |
value=search_results, | |
label="Top 10 Search Results" | |
) | |
feature_search = gr.Textbox(label="Search Feature Labels") | |
feature_matches = gr.CheckboxGroup(label="Matching Features", choices=[]) | |
add_button = gr.Button("Add Selected Features") | |
def search_feature_labels(search_text): | |
if not search_text: | |
return gr.CheckboxGroup(choices=[]) | |
matches = [f"{f['label']} ({f['index']})" for f in subject_data[current_subject]['feature_analysis'] if search_text.lower() in f['label'].lower()] | |
return gr.CheckboxGroup(choices=matches[:10]) | |
feature_search.change(search_feature_labels, inputs=[feature_search], outputs=[feature_matches]) | |
def on_add_features(selected_features, current_values, current_indices, manually_added_features): | |
if selected_features: | |
new_indices = [int(f.split('(')[-1].strip(')')) for f in selected_features] | |
# Add new indices to manually_added_features if they're not already there | |
manually_added_features = list(dict.fromkeys(manually_added_features + new_indices)) | |
return gr.CheckboxGroup(value=[]), current_values, current_indices, manually_added_features | |
return gr.CheckboxGroup(value=[]), current_values, current_indices, manually_added_features | |
add_button.click( | |
on_add_features, | |
inputs=[feature_matches, feature_values_state, feature_indices_state, manually_added_features_state], | |
outputs=[feature_matches, feature_values_state, feature_indices_state, manually_added_features_state] | |
) | |
with gr.Column(scale=1): | |
update_button = gr.Button("Update Results") | |
sliders = [] | |
for i, (value, index) in enumerate(zip(feature_values, feature_indices)): | |
feature = next((f for f in subject_data[current_subject]['feature_analysis'] if f['index'] == index), None) | |
label = f"{feature['label']} ({index})" if feature else f"Feature {index}" | |
# Add prefix and change color for manually added features | |
if index in manually_added_features: | |
label = f"[Custom] {label}" | |
slider = gr.Slider(minimum=0, maximum=1, step=0.01, value=value, label=label, key=f"slider-{index}", elem_id=f"custom-slider-{index}") | |
else: | |
slider = gr.Slider(minimum=0, maximum=1, step=0.01, value=value, label=label, key=f"slider-{index}") | |
sliders.append(slider) | |
def on_slider_change(*values): | |
manually_added_features = values[-1] | |
slider_values = list(values[:-1]) | |
# Reconstruct feature_indices based on the order of sliders | |
reconstructed_indices = [int(slider.label.split('(')[-1].split(')')[0]) for slider in sliders] | |
new_results, new_values, new_indices = update_search_results(slider_values, reconstructed_indices, manually_added_features, current_subject) | |
return new_results, new_values, new_indices, manually_added_features | |
update_button.click( | |
on_slider_change, | |
inputs=sliders + [manually_added_features_state], | |
outputs=[search_results_state, feature_values_state, feature_indices_state, manually_added_features_state] | |
) | |
return [df, feature_search, feature_matches, add_button, update_button] + sliders | |
with gr.Tab("Feature Visualisation"): | |
gr.Markdown("# Feature Visualiser") | |
with gr.Row(): | |
feature_search = gr.Textbox(label="Search Feature Labels") | |
feature_matches = gr.CheckboxGroup(label="Matching Features", choices=[]) | |
visualize_button = gr.Button("Visualize Feature") | |
feature_info = gr.Markdown() | |
abstracts_heading = gr.Markdown("## Top 5 Abstracts") | |
top_abstracts = gr.Dataframe( | |
headers=["Title", "Activation value"], | |
interactive=False | |
) | |
gr.Markdown("## Correlated Features") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown("### Top 5 Correlated Features") | |
top_correlated = gr.Dataframe( | |
headers=["Feature", "Cosine similarity"], | |
interactive=False | |
) | |
with gr.Column(scale=1): | |
gr.Markdown("### Bottom 5 Correlated Features") | |
bottom_correlated = gr.Dataframe( | |
headers=["Feature", "Cosine similarity"], | |
interactive=False | |
) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown("## Top 5 Co-occurring Features") | |
co_occurring_features = gr.Dataframe( | |
headers=["Feature", "Co-occurrences"], | |
interactive=False | |
) | |
with gr.Column(scale=1): | |
gr.Markdown(f"## Activation Value Distribution") | |
activation_dist = gr.Plot() | |
def search_feature_labels(search_text, current_subject): | |
if not search_text: | |
return gr.CheckboxGroup(choices=[]) | |
matches = [f"{f['label']} ({f['index']})" for f in subject_data[current_subject]['feature_analysis'] if search_text.lower() in f['label'].lower()] | |
return gr.CheckboxGroup(choices=matches[:10]) | |
feature_search.change(search_feature_labels, inputs=[feature_search, subject], outputs=[feature_matches]) | |
def on_visualize(selected_features, current_subject): | |
if not selected_features: | |
return "Please select a feature to visualize.", None, None, None, None, None, "", [] | |
# Extract the feature index from the selected feature string | |
feature_index = int(selected_features[0].split('(')[-1].strip(')')) | |
feature_info, top_abstracts, top_correlated, bottom_correlated, co_occurring_features, activation_dist = visualize_feature(current_subject, feature_index) | |
# Return the visualization results along with empty values for search box and checkbox | |
return feature_info, top_abstracts, top_correlated, bottom_correlated, co_occurring_features, activation_dist, "", [] | |
visualize_button.click( | |
on_visualize, | |
inputs=[feature_matches, subject], | |
outputs=[feature_info, top_abstracts, top_correlated, bottom_correlated, co_occurring_features, activation_dist, feature_search, feature_matches] | |
) | |
# Add logic to update components when subject changes | |
def on_subject_change(new_subject): | |
# Clear all states and return empty values for all components | |
return [], [], [], [], "", [], "", [], None, None, None, None, None, None | |
subject.change( | |
on_subject_change, | |
inputs=[subject], | |
outputs=[search_results_state, feature_values_state, feature_indices_state, manually_added_features_state, | |
input_text, feature_matches, feature_search, feature_matches, | |
feature_info, top_abstracts, top_correlated, bottom_correlated, co_occurring_features, activation_dist] | |
) | |
return demo | |
# Launch the interface | |
if __name__ == "__main__": | |
demo = create_interface() | |
demo.launch() | |