Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import numpy as np | |
from torch.utils.data import DataLoader, TensorDataset | |
from tqdm import tqdm | |
import os | |
import glob | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
class FastAutoencoder(nn.Module): | |
def __init__(self, n_dirs: int, d_model: int, k: int, auxk: int, multik: int, dead_steps_threshold: int = 266): | |
super().__init__() | |
self.n_dirs = n_dirs | |
self.d_model = d_model | |
self.k = k | |
self.auxk = auxk | |
self.multik = multik | |
self.dead_steps_threshold = dead_steps_threshold | |
self.encoder = nn.Linear(d_model, n_dirs, bias=False) | |
self.decoder = nn.Linear(n_dirs, d_model, bias=False) | |
self.pre_bias = nn.Parameter(torch.zeros(d_model)) | |
self.latent_bias = nn.Parameter(torch.zeros(n_dirs)) | |
self.stats_last_nonzero = torch.zeros(n_dirs, dtype=torch.long, device=device) | |
def forward(self, x): | |
x = x - self.pre_bias | |
latents_pre_act = self.encoder(x) + self.latent_bias | |
# Main top-k selection | |
topk_values, topk_indices = torch.topk(latents_pre_act, k=self.k, dim=-1) | |
topk_values = F.relu(topk_values) | |
multik_values, multik_indices = torch.topk(latents_pre_act, k=4*self.k, dim=-1) | |
multik_values = F.relu(multik_values) | |
latents = torch.zeros_like(latents_pre_act) | |
latents.scatter_(-1, topk_indices, topk_values) | |
multik_latents = torch.zeros_like(latents_pre_act) | |
multik_latents.scatter_(-1, multik_indices, multik_values) | |
# Update stats_last_nonzero | |
self.stats_last_nonzero += 1 | |
self.stats_last_nonzero.scatter_(0, topk_indices.unique(), 0) | |
recons = self.decoder(latents) + self.pre_bias | |
multik_recons = self.decoder(multik_latents) + self.pre_bias | |
# AuxK | |
if self.auxk is not None: | |
# Create dead latents mask | |
dead_mask = (self.stats_last_nonzero > self.dead_steps_threshold).float() | |
# Apply mask to latents_pre_act | |
dead_latents_pre_act = latents_pre_act * dead_mask | |
# Select top-k_aux from dead latents | |
auxk_values, auxk_indices = torch.topk(dead_latents_pre_act, k=self.auxk, dim=-1) | |
auxk_values = F.relu(auxk_values) | |
else: | |
auxk_values, auxk_indices = None, None | |
return recons, { | |
"topk_indices": topk_indices, | |
"topk_values": topk_values, | |
"multik_indices": multik_indices, | |
"multik_values": multik_values, | |
"multik_recons": multik_recons, | |
"auxk_indices": auxk_indices, | |
"auxk_values": auxk_values, | |
"latents_pre_act": latents_pre_act, | |
"latents_post_act": latents, | |
} | |
def decode_sparse(self, indices, values): | |
latents = torch.zeros(self.n_dirs, device=indices.device) | |
latents.scatter_(-1, indices, values) | |
return self.decoder(latents) + self.pre_bias | |
# def decode_sparse(self, indices, values): | |
# latents = torch.zeros(1, self.n_dirs, device=indices.device, dtype=torch.float32) | |
# latents.scatter_(-1, indices.unsqueeze(0), values.unsqueeze(0)) | |
# return self.decoder(latents.squeeze(0)) + self.pre_bias | |
def print_tensor_info(self, tensor, name): | |
print(f"{name} - Shape: {tensor.shape}, Dtype: {tensor.dtype}, Device: {tensor.device}") | |
def decode_clamp(self, latents, clamp): | |
topk_values, topk_indices = torch.topk(latents, k = 64, dim=-1) | |
topk_values = F.relu(topk_values) | |
latents = torch.zeros_like(latents) | |
latents.scatter_(-1, topk_indices, topk_values) | |
# multiply latents by clamp, which is 1D but has has the same size as each latent vector | |
latents = latents * clamp | |
return self.decoder(latents) + self.pre_bias | |
def decode_at_k(self, latents, k): | |
topk_values, topk_indices = torch.topk(latents, k=k, dim=-1) | |
topk_values = F.relu(topk_values) | |
latents = torch.zeros_like(latents) | |
latents.scatter_(-1, topk_indices, topk_values) | |
return self.decoder(latents) + self.pre_bias | |
def unit_norm_decoder_(autoencoder: FastAutoencoder) -> None: | |
with torch.no_grad(): | |
autoencoder.decoder.weight.div_(autoencoder.decoder.weight.norm(dim=0, keepdim=True)) | |
def unit_norm_decoder_grad_adjustment_(autoencoder: FastAutoencoder) -> None: | |
if autoencoder.decoder.weight.grad is not None: | |
with torch.no_grad(): | |
proj = torch.sum(autoencoder.decoder.weight * autoencoder.decoder.weight.grad, dim=0, keepdim=True) | |
autoencoder.decoder.weight.grad.sub_(proj * autoencoder.decoder.weight) | |
def mse(output, target): | |
return F.mse_loss(output, target) | |
def normalized_mse(recon, xs): | |
return mse(recon, xs) / mse(xs.mean(dim=0, keepdim=True).expand_as(xs), xs) | |
def loss_fn(ae, x, recons, info, auxk_coef, multik_coef): | |
recons_loss = normalized_mse(recons, x) | |
recons_loss += multik_coef * normalized_mse(info["multik_recons"], x) | |
if ae.auxk is not None: | |
e = x - recons.detach() # reconstruction error | |
auxk_latents = torch.zeros_like(info["latents_pre_act"]) | |
auxk_latents.scatter_(-1, info["auxk_indices"], info["auxk_values"]) | |
e_hat = ae.decoder(auxk_latents) # reconstruction of error using dead latents | |
auxk_loss = normalized_mse(e_hat, e) | |
total_loss = recons_loss + auxk_coef * auxk_loss | |
else: | |
auxk_loss = torch.tensor(0.0, device=device) | |
total_loss = recons_loss | |
return total_loss, recons_loss, auxk_loss | |
def init_from_data_(ae, data_sample): | |
# set pre_bias to median of data | |
ae.pre_bias.data = torch.median(data_sample, dim=0).values | |
nn.init.xavier_uniform_(ae.decoder.weight) | |
# decoder is unit norm | |
unit_norm_decoder_(ae) | |
# encoder as transpose of decoder | |
ae.encoder.weight.data = ae.decoder.weight.t().clone() | |
nn.init.zeros_(ae.latent_bias) |