Spaces:
Runtime error
Runtime error
from transformers import AutoProcessor, AutoModelForCausalLM | |
class GitBaseCocoModel: | |
def __init__(self, device, checkpoint="microsoft/git-base-coco"): | |
""" | |
A wrapper class for the Git-Base-COCO model. It is a pretrained model for image captioning. | |
----- | |
Parameters: | |
device: torch.device | |
The device to run the model on. | |
checkpoint: str | |
The checkpoint to load the model from. | |
----- | |
Returns: | |
None | |
""" | |
self.checkpoint = checkpoint | |
self.device = device | |
self.processor = AutoProcessor.from_pretrained(self.checkpoint) | |
self.model = AutoModelForCausalLM.from_pretrained(self.checkpoint).to(self.device) | |
def generate(self, image, max_len=50, num_captions=1): | |
""" | |
Generates captions for the given image. | |
----- | |
Parameters: | |
image: PIL.Image | |
The image to generate captions for. | |
max_len: int | |
The maximum length of the caption. | |
num_captions: int | |
The number of captions to generate. | |
""" | |
pixel_values = self.processor( | |
images=image, return_tensors="pt" | |
).pixel_values.to(self.device) | |
generated_ids = self.model.generate( | |
pixel_values=pixel_values, | |
max_length=max_len, | |
num_beams=num_captions, | |
num_return_sequences=num_captions, | |
) | |
return self.processor.batch_decode(generated_ids, skip_special_tokens=True) | |