File size: 8,182 Bytes
a1d409e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import unittest

from transformers import BartTokenizer, BartTokenizerFast, BatchEncoding
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.utils import cached_property

from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors


@require_tokenizers
class TestTokenizationBart(TokenizerTesterMixin, unittest.TestCase):
    tokenizer_class = BartTokenizer
    rust_tokenizer_class = BartTokenizerFast
    test_rust_tokenizer = True
    from_pretrained_filter = filter_roberta_detectors
    # from_pretrained_kwargs = {'add_prefix_space': True}

    def setUp(self):
        super().setUp()
        vocab = [
            "l",
            "o",
            "w",
            "e",
            "r",
            "s",
            "t",
            "i",
            "d",
            "n",
            "\u0120",
            "\u0120l",
            "\u0120n",
            "\u0120lo",
            "\u0120low",
            "er",
            "\u0120lowest",
            "\u0120newer",
            "\u0120wider",
            "<unk>",
        ]
        vocab_tokens = dict(zip(vocab, range(len(vocab))))
        merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
        self.special_tokens_map = {"unk_token": "<unk>"}

        self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
        self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
        with open(self.vocab_file, "w", encoding="utf-8") as fp:
            fp.write(json.dumps(vocab_tokens) + "\n")
        with open(self.merges_file, "w", encoding="utf-8") as fp:
            fp.write("\n".join(merges))

    def get_tokenizer(self, **kwargs):
        kwargs.update(self.special_tokens_map)
        return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)

    def get_rust_tokenizer(self, **kwargs):
        kwargs.update(self.special_tokens_map)
        return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)

    def get_input_output_texts(self, tokenizer):
        return "lower newer", "lower newer"

    @cached_property
    def default_tokenizer(self):
        return BartTokenizer.from_pretrained("facebook/bart-large")

    @cached_property
    def default_tokenizer_fast(self):
        return BartTokenizerFast.from_pretrained("facebook/bart-large")

    @require_torch
    def test_prepare_batch(self):
        src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."]
        expected_src_tokens = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2]

        for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
            batch = tokenizer(src_text, max_length=len(expected_src_tokens), padding=True, return_tensors="pt")
            self.assertIsInstance(batch, BatchEncoding)

            self.assertEqual((2, 9), batch.input_ids.shape)
            self.assertEqual((2, 9), batch.attention_mask.shape)
            result = batch.input_ids.tolist()[0]
            self.assertListEqual(expected_src_tokens, result)
            # Test that special tokens are reset

    @require_torch
    def test_prepare_batch_empty_target_text(self):
        src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."]
        for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
            batch = tokenizer(src_text, padding=True, return_tensors="pt")
            # check if input_ids are returned and no labels
            self.assertIn("input_ids", batch)
            self.assertIn("attention_mask", batch)
            self.assertNotIn("labels", batch)
            self.assertNotIn("decoder_attention_mask", batch)

    @require_torch
    def test_tokenizer_as_target_length(self):
        tgt_text = [
            "Summary of the text.",
            "Another summary.",
        ]
        for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
            targets = tokenizer(text_target=tgt_text, max_length=32, padding="max_length", return_tensors="pt")
            self.assertEqual(32, targets["input_ids"].shape[1])

    @require_torch
    def test_prepare_batch_not_longer_than_maxlen(self):
        for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
            batch = tokenizer(
                ["I am a small frog" * 1024, "I am a small frog"], padding=True, truncation=True, return_tensors="pt"
            )
            self.assertIsInstance(batch, BatchEncoding)
            self.assertEqual(batch.input_ids.shape, (2, 1024))

    @require_torch
    def test_special_tokens(self):
        src_text = ["A long paragraph for summarization."]
        tgt_text = [
            "Summary of the text.",
        ]
        for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
            inputs = tokenizer(src_text, return_tensors="pt")
            targets = tokenizer(text_target=tgt_text, return_tensors="pt")
            input_ids = inputs["input_ids"]
            labels = targets["input_ids"]
            self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item())
            self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item())
            self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item())
            self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item())

    def test_pretokenized_inputs(self):
        pass

    def test_embeded_special_tokens(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                sentence = "A, <mask> AllenNLP sentence."
                tokens_r = tokenizer_r.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True)
                tokens_p = tokenizer_p.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True)

                # token_type_ids should put 0 everywhere
                self.assertEqual(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"]))

                # attention_mask should put 1 everywhere, so sum over length should be 1
                self.assertEqual(
                    sum(tokens_r["attention_mask"]) / len(tokens_r["attention_mask"]),
                    sum(tokens_p["attention_mask"]) / len(tokens_p["attention_mask"]),
                )

                tokens_r_str = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"])
                tokens_p_str = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"])

                # Rust correctly handles the space before the mask while python doesnt
                self.assertSequenceEqual(tokens_p["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2])
                self.assertSequenceEqual(tokens_r["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2])

                self.assertSequenceEqual(
                    tokens_p_str, ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"]
                )
                self.assertSequenceEqual(
                    tokens_r_str, ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"]
                )