Spaces:
Runtime error
Runtime error
File size: 17,092 Bytes
a1d409e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import (
MODEL_FOR_CAUSAL_LM_MAPPING,
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
AutoModelForCausalLM,
AutoModelForSeq2SeqLM,
AutoTokenizer,
BlenderbotSmallForConditionalGeneration,
BlenderbotSmallTokenizer,
Conversation,
ConversationalPipeline,
TFAutoModelForCausalLM,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, require_tf, require_torch, slow, torch_device
from .test_pipelines_common import ANY
DEFAULT_DEVICE_NUM = -1 if torch_device == "cpu" else 0
@is_pipeline_test
class ConversationalPipelineTests(unittest.TestCase):
model_mapping = dict(
list(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.items())
if MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
else [] + list(MODEL_FOR_CAUSAL_LM_MAPPING.items())
if MODEL_FOR_CAUSAL_LM_MAPPING
else []
)
tf_model_mapping = dict(
list(TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.items())
if TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
else [] + list(TF_MODEL_FOR_CAUSAL_LM_MAPPING.items())
if TF_MODEL_FOR_CAUSAL_LM_MAPPING
else []
)
def get_test_pipeline(self, model, tokenizer, processor):
conversation_agent = ConversationalPipeline(model=model, tokenizer=tokenizer)
return conversation_agent, [Conversation("Hi there!")]
def run_pipeline_test(self, conversation_agent, _):
# Simple
outputs = conversation_agent(Conversation("Hi there!"))
self.assertEqual(outputs, Conversation(past_user_inputs=["Hi there!"], generated_responses=[ANY(str)]))
# Single list
outputs = conversation_agent([Conversation("Hi there!")])
self.assertEqual(outputs, Conversation(past_user_inputs=["Hi there!"], generated_responses=[ANY(str)]))
# Batch
conversation_1 = Conversation("Going to the movies tonight - any suggestions?")
conversation_2 = Conversation("What's the last book you have read?")
self.assertEqual(len(conversation_1.past_user_inputs), 0)
self.assertEqual(len(conversation_2.past_user_inputs), 0)
outputs = conversation_agent([conversation_1, conversation_2])
self.assertEqual(outputs, [conversation_1, conversation_2])
self.assertEqual(
outputs,
[
Conversation(
past_user_inputs=["Going to the movies tonight - any suggestions?"],
generated_responses=[ANY(str)],
),
Conversation(past_user_inputs=["What's the last book you have read?"], generated_responses=[ANY(str)]),
],
)
# One conversation with history
conversation_2.add_user_input("Why do you recommend it?")
outputs = conversation_agent(conversation_2)
self.assertEqual(outputs, conversation_2)
self.assertEqual(
outputs,
Conversation(
past_user_inputs=["What's the last book you have read?", "Why do you recommend it?"],
generated_responses=[ANY(str), ANY(str)],
),
)
with self.assertRaises(ValueError):
conversation_agent("Hi there!")
with self.assertRaises(ValueError):
conversation_agent(Conversation())
# Conversation have been consumed and are not valid anymore
# Inactive conversations passed to the pipeline raise a ValueError
with self.assertRaises(ValueError):
conversation_agent(conversation_2)
@require_torch
@slow
def test_integration_torch_conversation(self):
# When
conversation_agent = pipeline(task="conversational", device=DEFAULT_DEVICE_NUM)
conversation_1 = Conversation("Going to the movies tonight - any suggestions?")
conversation_2 = Conversation("What's the last book you have read?")
# Then
self.assertEqual(len(conversation_1.past_user_inputs), 0)
self.assertEqual(len(conversation_2.past_user_inputs), 0)
# When
result = conversation_agent([conversation_1, conversation_2], do_sample=False, max_length=1000)
# Then
self.assertEqual(result, [conversation_1, conversation_2])
self.assertEqual(len(result[0].past_user_inputs), 1)
self.assertEqual(len(result[1].past_user_inputs), 1)
self.assertEqual(len(result[0].generated_responses), 1)
self.assertEqual(len(result[1].generated_responses), 1)
self.assertEqual(result[0].past_user_inputs[0], "Going to the movies tonight - any suggestions?")
self.assertEqual(result[0].generated_responses[0], "The Big Lebowski")
self.assertEqual(result[1].past_user_inputs[0], "What's the last book you have read?")
self.assertEqual(result[1].generated_responses[0], "The Last Question")
# When
conversation_2.add_user_input("Why do you recommend it?")
result = conversation_agent(conversation_2, do_sample=False, max_length=1000)
# Then
self.assertEqual(result, conversation_2)
self.assertEqual(len(result.past_user_inputs), 2)
self.assertEqual(len(result.generated_responses), 2)
self.assertEqual(result.past_user_inputs[1], "Why do you recommend it?")
self.assertEqual(result.generated_responses[1], "It's a good book.")
@require_torch
@slow
def test_integration_torch_conversation_truncated_history(self):
# When
conversation_agent = pipeline(task="conversational", min_length_for_response=24, device=DEFAULT_DEVICE_NUM)
conversation_1 = Conversation("Going to the movies tonight - any suggestions?")
# Then
self.assertEqual(len(conversation_1.past_user_inputs), 0)
# When
result = conversation_agent(conversation_1, do_sample=False, max_length=36)
# Then
self.assertEqual(result, conversation_1)
self.assertEqual(len(result.past_user_inputs), 1)
self.assertEqual(len(result.generated_responses), 1)
self.assertEqual(result.past_user_inputs[0], "Going to the movies tonight - any suggestions?")
self.assertEqual(result.generated_responses[0], "The Big Lebowski")
# When
conversation_1.add_user_input("Is it an action movie?")
result = conversation_agent(conversation_1, do_sample=False, max_length=36)
# Then
self.assertEqual(result, conversation_1)
self.assertEqual(len(result.past_user_inputs), 2)
self.assertEqual(len(result.generated_responses), 2)
self.assertEqual(result.past_user_inputs[1], "Is it an action movie?")
self.assertEqual(result.generated_responses[1], "It's a comedy.")
@require_torch
def test_small_model_pt(self):
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-small")
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-small")
conversation_agent = ConversationalPipeline(model=model, tokenizer=tokenizer)
conversation = Conversation("hello")
output = conversation_agent(conversation)
self.assertEqual(output, Conversation(past_user_inputs=["hello"], generated_responses=["Hi"]))
@require_tf
def test_small_model_tf(self):
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-small")
model = TFAutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-small")
conversation_agent = ConversationalPipeline(model=model, tokenizer=tokenizer)
conversation = Conversation("hello")
output = conversation_agent(conversation)
self.assertEqual(output, Conversation(past_user_inputs=["hello"], generated_responses=["Hi"]))
@require_torch
@slow
def test_integration_torch_conversation_dialogpt_input_ids(self):
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-small")
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-small")
conversation_agent = ConversationalPipeline(model=model, tokenizer=tokenizer)
conversation_1 = Conversation("hello")
inputs = conversation_agent.preprocess(conversation_1)
self.assertEqual(inputs["input_ids"].tolist(), [[31373, 50256]])
conversation_2 = Conversation("how are you ?", past_user_inputs=["hello"], generated_responses=["Hi there!"])
inputs = conversation_agent.preprocess(conversation_2)
self.assertEqual(
inputs["input_ids"].tolist(), [[31373, 50256, 17250, 612, 0, 50256, 4919, 389, 345, 5633, 50256]]
)
@require_torch
@slow
def test_integration_torch_conversation_blenderbot_400M_input_ids(self):
tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/blenderbot-400M-distill")
conversation_agent = ConversationalPipeline(model=model, tokenizer=tokenizer)
# test1
conversation_1 = Conversation("hello")
inputs = conversation_agent.preprocess(conversation_1)
self.assertEqual(inputs["input_ids"].tolist(), [[1710, 86, 2]])
# test2
conversation_1 = Conversation(
"I like lasagne.",
past_user_inputs=["hello"],
generated_responses=[
" Do you like lasagne? It is a traditional Italian dish consisting of a shepherd's pie."
],
)
inputs = conversation_agent.preprocess(conversation_1)
self.assertEqual(
inputs["input_ids"].tolist(),
[
# This should be compared with the same conversation on ParlAI `safe_interactive` demo.
[
1710, # hello
86,
228, # Double space
228,
946,
304,
398,
6881,
558,
964,
38,
452,
315,
265,
6252,
452,
322,
968,
6884,
3146,
278,
306,
265,
617,
87,
388,
75,
341,
286,
521,
21,
228, # Double space
228,
281, # I like lasagne.
398,
6881,
558,
964,
21,
2, # EOS
],
],
)
@require_torch
@slow
def test_integration_torch_conversation_blenderbot_400M(self):
tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/blenderbot-400M-distill")
conversation_agent = ConversationalPipeline(model=model, tokenizer=tokenizer)
conversation_1 = Conversation("hello")
result = conversation_agent(
conversation_1,
)
self.assertEqual(
result.generated_responses[0],
# ParlAI implementation output, we have a different one, but it's our
# second best, you can check by using num_return_sequences=10
# " Hello! How are you? I'm just getting ready to go to work, how about you?",
" Hello! How are you doing today? I just got back from a walk with my dog.",
)
conversation_1 = Conversation("Lasagne hello")
result = conversation_agent(conversation_1, encoder_no_repeat_ngram_size=3)
self.assertEqual(
result.generated_responses[0],
" Do you like lasagne? It is a traditional Italian dish consisting of a shepherd's pie.",
)
conversation_1 = Conversation(
"Lasagne hello Lasagne is my favorite Italian dish. Do you like lasagne? I like lasagne."
)
result = conversation_agent(
conversation_1,
encoder_no_repeat_ngram_size=3,
)
self.assertEqual(
result.generated_responses[0],
" Me too. I like how it can be topped with vegetables, meats, and condiments.",
)
@require_torch
@slow
def test_integration_torch_conversation_encoder_decoder(self):
# When
tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M")
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/blenderbot_small-90M")
conversation_agent = ConversationalPipeline(model=model, tokenizer=tokenizer, device=DEFAULT_DEVICE_NUM)
conversation_1 = Conversation("My name is Sarah and I live in London")
conversation_2 = Conversation("Going to the movies tonight, What movie would you recommend? ")
# Then
self.assertEqual(len(conversation_1.past_user_inputs), 0)
self.assertEqual(len(conversation_2.past_user_inputs), 0)
# When
result = conversation_agent([conversation_1, conversation_2], do_sample=False, max_length=1000)
# Then
self.assertEqual(result, [conversation_1, conversation_2])
self.assertEqual(len(result[0].past_user_inputs), 1)
self.assertEqual(len(result[1].past_user_inputs), 1)
self.assertEqual(len(result[0].generated_responses), 1)
self.assertEqual(len(result[1].generated_responses), 1)
self.assertEqual(result[0].past_user_inputs[0], "My name is Sarah and I live in London")
self.assertEqual(
result[0].generated_responses[0],
"hi sarah, i live in london as well. do you have any plans for the weekend?",
)
self.assertEqual(
result[1].past_user_inputs[0], "Going to the movies tonight, What movie would you recommend? "
)
self.assertEqual(
result[1].generated_responses[0], "i don't know... i'm not really sure. what movie are you going to see?"
)
# When
conversation_1.add_user_input("Not yet, what about you?")
conversation_2.add_user_input("What's your name?")
result = conversation_agent([conversation_1, conversation_2], do_sample=False, max_length=1000)
# Then
self.assertEqual(result, [conversation_1, conversation_2])
self.assertEqual(len(result[0].past_user_inputs), 2)
self.assertEqual(len(result[1].past_user_inputs), 2)
self.assertEqual(len(result[0].generated_responses), 2)
self.assertEqual(len(result[1].generated_responses), 2)
self.assertEqual(result[0].past_user_inputs[1], "Not yet, what about you?")
self.assertEqual(result[0].generated_responses[1], "i don't have any plans yet. i'm not sure what to do yet.")
self.assertEqual(result[1].past_user_inputs[1], "What's your name?")
self.assertEqual(result[1].generated_responses[1], "i don't have a name, but i'm going to see a horror movie.")
@require_torch
@slow
def test_from_pipeline_conversation(self):
model_id = "facebook/blenderbot_small-90M"
# from model id
conversation_agent_from_model_id = pipeline("conversational", model=model_id, tokenizer=model_id)
# from model object
model = BlenderbotSmallForConditionalGeneration.from_pretrained(model_id)
tokenizer = BlenderbotSmallTokenizer.from_pretrained(model_id)
conversation_agent_from_model = pipeline("conversational", model=model, tokenizer=tokenizer)
conversation = Conversation("My name is Sarah and I live in London")
conversation_copy = Conversation("My name is Sarah and I live in London")
result_model_id = conversation_agent_from_model_id([conversation])
result_model = conversation_agent_from_model([conversation_copy])
# check for equality
self.assertEqual(
result_model_id.generated_responses[0],
"hi sarah, i live in london as well. do you have any plans for the weekend?",
)
self.assertEqual(
result_model_id.generated_responses[0],
result_model.generated_responses[0],
)
|