Spaces:
Runtime error
Runtime error
File size: 7,223 Bytes
a1d409e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from transformers.testing_utils import require_flax, require_tf, require_torch
from transformers.utils import (
expand_dims,
flatten_dict,
is_flax_available,
is_tf_available,
is_torch_available,
reshape,
squeeze,
transpose,
)
if is_flax_available():
import jax.numpy as jnp
if is_tf_available():
import tensorflow as tf
if is_torch_available():
import torch
class GenericTester(unittest.TestCase):
def test_flatten_dict(self):
input_dict = {
"task_specific_params": {
"summarization": {"length_penalty": 1.0, "max_length": 128, "min_length": 12, "num_beams": 4},
"summarization_cnn": {"length_penalty": 2.0, "max_length": 142, "min_length": 56, "num_beams": 4},
"summarization_xsum": {"length_penalty": 1.0, "max_length": 62, "min_length": 11, "num_beams": 6},
}
}
expected_dict = {
"task_specific_params.summarization.length_penalty": 1.0,
"task_specific_params.summarization.max_length": 128,
"task_specific_params.summarization.min_length": 12,
"task_specific_params.summarization.num_beams": 4,
"task_specific_params.summarization_cnn.length_penalty": 2.0,
"task_specific_params.summarization_cnn.max_length": 142,
"task_specific_params.summarization_cnn.min_length": 56,
"task_specific_params.summarization_cnn.num_beams": 4,
"task_specific_params.summarization_xsum.length_penalty": 1.0,
"task_specific_params.summarization_xsum.max_length": 62,
"task_specific_params.summarization_xsum.min_length": 11,
"task_specific_params.summarization_xsum.num_beams": 6,
}
self.assertEqual(flatten_dict(input_dict), expected_dict)
def test_transpose_numpy(self):
x = np.random.randn(3, 4)
self.assertTrue(np.allclose(transpose(x), x.transpose()))
x = np.random.randn(3, 4, 5)
self.assertTrue(np.allclose(transpose(x, axes=(1, 2, 0)), x.transpose((1, 2, 0))))
@require_torch
def test_transpose_torch(self):
x = np.random.randn(3, 4)
t = torch.tensor(x)
self.assertTrue(np.allclose(transpose(x), transpose(t).numpy()))
x = np.random.randn(3, 4, 5)
t = torch.tensor(x)
self.assertTrue(np.allclose(transpose(x, axes=(1, 2, 0)), transpose(t, axes=(1, 2, 0)).numpy()))
@require_tf
def test_transpose_tf(self):
x = np.random.randn(3, 4)
t = tf.constant(x)
self.assertTrue(np.allclose(transpose(x), transpose(t).numpy()))
x = np.random.randn(3, 4, 5)
t = tf.constant(x)
self.assertTrue(np.allclose(transpose(x, axes=(1, 2, 0)), transpose(t, axes=(1, 2, 0)).numpy()))
@require_flax
def test_transpose_flax(self):
x = np.random.randn(3, 4)
t = jnp.array(x)
self.assertTrue(np.allclose(transpose(x), np.asarray(transpose(t))))
x = np.random.randn(3, 4, 5)
t = jnp.array(x)
self.assertTrue(np.allclose(transpose(x, axes=(1, 2, 0)), np.asarray(transpose(t, axes=(1, 2, 0)))))
def test_reshape_numpy(self):
x = np.random.randn(3, 4)
self.assertTrue(np.allclose(reshape(x, (4, 3)), np.reshape(x, (4, 3))))
x = np.random.randn(3, 4, 5)
self.assertTrue(np.allclose(reshape(x, (12, 5)), np.reshape(x, (12, 5))))
@require_torch
def test_reshape_torch(self):
x = np.random.randn(3, 4)
t = torch.tensor(x)
self.assertTrue(np.allclose(reshape(x, (4, 3)), reshape(t, (4, 3)).numpy()))
x = np.random.randn(3, 4, 5)
t = torch.tensor(x)
self.assertTrue(np.allclose(reshape(x, (12, 5)), reshape(t, (12, 5)).numpy()))
@require_tf
def test_reshape_tf(self):
x = np.random.randn(3, 4)
t = tf.constant(x)
self.assertTrue(np.allclose(reshape(x, (4, 3)), reshape(t, (4, 3)).numpy()))
x = np.random.randn(3, 4, 5)
t = tf.constant(x)
self.assertTrue(np.allclose(reshape(x, (12, 5)), reshape(t, (12, 5)).numpy()))
@require_flax
def test_reshape_flax(self):
x = np.random.randn(3, 4)
t = jnp.array(x)
self.assertTrue(np.allclose(reshape(x, (4, 3)), np.asarray(reshape(t, (4, 3)))))
x = np.random.randn(3, 4, 5)
t = jnp.array(x)
self.assertTrue(np.allclose(reshape(x, (12, 5)), np.asarray(reshape(t, (12, 5)))))
def test_squeeze_numpy(self):
x = np.random.randn(1, 3, 4)
self.assertTrue(np.allclose(squeeze(x), np.squeeze(x)))
x = np.random.randn(1, 4, 1, 5)
self.assertTrue(np.allclose(squeeze(x, axis=2), np.squeeze(x, axis=2)))
@require_torch
def test_squeeze_torch(self):
x = np.random.randn(1, 3, 4)
t = torch.tensor(x)
self.assertTrue(np.allclose(squeeze(x), squeeze(t).numpy()))
x = np.random.randn(1, 4, 1, 5)
t = torch.tensor(x)
self.assertTrue(np.allclose(squeeze(x, axis=2), squeeze(t, axis=2).numpy()))
@require_tf
def test_squeeze_tf(self):
x = np.random.randn(1, 3, 4)
t = tf.constant(x)
self.assertTrue(np.allclose(squeeze(x), squeeze(t).numpy()))
x = np.random.randn(1, 4, 1, 5)
t = tf.constant(x)
self.assertTrue(np.allclose(squeeze(x, axis=2), squeeze(t, axis=2).numpy()))
@require_flax
def test_squeeze_flax(self):
x = np.random.randn(1, 3, 4)
t = jnp.array(x)
self.assertTrue(np.allclose(squeeze(x), np.asarray(squeeze(t))))
x = np.random.randn(1, 4, 1, 5)
t = jnp.array(x)
self.assertTrue(np.allclose(squeeze(x, axis=2), np.asarray(squeeze(t, axis=2))))
def test_expand_dims_numpy(self):
x = np.random.randn(3, 4)
self.assertTrue(np.allclose(expand_dims(x, axis=1), np.expand_dims(x, axis=1)))
@require_torch
def test_expand_dims_torch(self):
x = np.random.randn(3, 4)
t = torch.tensor(x)
self.assertTrue(np.allclose(expand_dims(x, axis=1), expand_dims(t, axis=1).numpy()))
@require_tf
def test_expand_dims_tf(self):
x = np.random.randn(3, 4)
t = tf.constant(x)
self.assertTrue(np.allclose(expand_dims(x, axis=1), expand_dims(t, axis=1).numpy()))
@require_flax
def test_expand_dims_flax(self):
x = np.random.randn(3, 4)
t = jnp.array(x)
self.assertTrue(np.allclose(expand_dims(x, axis=1), np.asarray(expand_dims(t, axis=1))))
|