File size: 7,223 Bytes
a1d409e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import numpy as np

from transformers.testing_utils import require_flax, require_tf, require_torch
from transformers.utils import (
    expand_dims,
    flatten_dict,
    is_flax_available,
    is_tf_available,
    is_torch_available,
    reshape,
    squeeze,
    transpose,
)


if is_flax_available():
    import jax.numpy as jnp

if is_tf_available():
    import tensorflow as tf

if is_torch_available():
    import torch


class GenericTester(unittest.TestCase):
    def test_flatten_dict(self):
        input_dict = {
            "task_specific_params": {
                "summarization": {"length_penalty": 1.0, "max_length": 128, "min_length": 12, "num_beams": 4},
                "summarization_cnn": {"length_penalty": 2.0, "max_length": 142, "min_length": 56, "num_beams": 4},
                "summarization_xsum": {"length_penalty": 1.0, "max_length": 62, "min_length": 11, "num_beams": 6},
            }
        }
        expected_dict = {
            "task_specific_params.summarization.length_penalty": 1.0,
            "task_specific_params.summarization.max_length": 128,
            "task_specific_params.summarization.min_length": 12,
            "task_specific_params.summarization.num_beams": 4,
            "task_specific_params.summarization_cnn.length_penalty": 2.0,
            "task_specific_params.summarization_cnn.max_length": 142,
            "task_specific_params.summarization_cnn.min_length": 56,
            "task_specific_params.summarization_cnn.num_beams": 4,
            "task_specific_params.summarization_xsum.length_penalty": 1.0,
            "task_specific_params.summarization_xsum.max_length": 62,
            "task_specific_params.summarization_xsum.min_length": 11,
            "task_specific_params.summarization_xsum.num_beams": 6,
        }

        self.assertEqual(flatten_dict(input_dict), expected_dict)

    def test_transpose_numpy(self):
        x = np.random.randn(3, 4)
        self.assertTrue(np.allclose(transpose(x), x.transpose()))

        x = np.random.randn(3, 4, 5)
        self.assertTrue(np.allclose(transpose(x, axes=(1, 2, 0)), x.transpose((1, 2, 0))))

    @require_torch
    def test_transpose_torch(self):
        x = np.random.randn(3, 4)
        t = torch.tensor(x)
        self.assertTrue(np.allclose(transpose(x), transpose(t).numpy()))

        x = np.random.randn(3, 4, 5)
        t = torch.tensor(x)
        self.assertTrue(np.allclose(transpose(x, axes=(1, 2, 0)), transpose(t, axes=(1, 2, 0)).numpy()))

    @require_tf
    def test_transpose_tf(self):
        x = np.random.randn(3, 4)
        t = tf.constant(x)
        self.assertTrue(np.allclose(transpose(x), transpose(t).numpy()))

        x = np.random.randn(3, 4, 5)
        t = tf.constant(x)
        self.assertTrue(np.allclose(transpose(x, axes=(1, 2, 0)), transpose(t, axes=(1, 2, 0)).numpy()))

    @require_flax
    def test_transpose_flax(self):
        x = np.random.randn(3, 4)
        t = jnp.array(x)
        self.assertTrue(np.allclose(transpose(x), np.asarray(transpose(t))))

        x = np.random.randn(3, 4, 5)
        t = jnp.array(x)
        self.assertTrue(np.allclose(transpose(x, axes=(1, 2, 0)), np.asarray(transpose(t, axes=(1, 2, 0)))))

    def test_reshape_numpy(self):
        x = np.random.randn(3, 4)
        self.assertTrue(np.allclose(reshape(x, (4, 3)), np.reshape(x, (4, 3))))

        x = np.random.randn(3, 4, 5)
        self.assertTrue(np.allclose(reshape(x, (12, 5)), np.reshape(x, (12, 5))))

    @require_torch
    def test_reshape_torch(self):
        x = np.random.randn(3, 4)
        t = torch.tensor(x)
        self.assertTrue(np.allclose(reshape(x, (4, 3)), reshape(t, (4, 3)).numpy()))

        x = np.random.randn(3, 4, 5)
        t = torch.tensor(x)
        self.assertTrue(np.allclose(reshape(x, (12, 5)), reshape(t, (12, 5)).numpy()))

    @require_tf
    def test_reshape_tf(self):
        x = np.random.randn(3, 4)
        t = tf.constant(x)
        self.assertTrue(np.allclose(reshape(x, (4, 3)), reshape(t, (4, 3)).numpy()))

        x = np.random.randn(3, 4, 5)
        t = tf.constant(x)
        self.assertTrue(np.allclose(reshape(x, (12, 5)), reshape(t, (12, 5)).numpy()))

    @require_flax
    def test_reshape_flax(self):
        x = np.random.randn(3, 4)
        t = jnp.array(x)
        self.assertTrue(np.allclose(reshape(x, (4, 3)), np.asarray(reshape(t, (4, 3)))))

        x = np.random.randn(3, 4, 5)
        t = jnp.array(x)
        self.assertTrue(np.allclose(reshape(x, (12, 5)), np.asarray(reshape(t, (12, 5)))))

    def test_squeeze_numpy(self):
        x = np.random.randn(1, 3, 4)
        self.assertTrue(np.allclose(squeeze(x), np.squeeze(x)))

        x = np.random.randn(1, 4, 1, 5)
        self.assertTrue(np.allclose(squeeze(x, axis=2), np.squeeze(x, axis=2)))

    @require_torch
    def test_squeeze_torch(self):
        x = np.random.randn(1, 3, 4)
        t = torch.tensor(x)
        self.assertTrue(np.allclose(squeeze(x), squeeze(t).numpy()))

        x = np.random.randn(1, 4, 1, 5)
        t = torch.tensor(x)
        self.assertTrue(np.allclose(squeeze(x, axis=2), squeeze(t, axis=2).numpy()))

    @require_tf
    def test_squeeze_tf(self):
        x = np.random.randn(1, 3, 4)
        t = tf.constant(x)
        self.assertTrue(np.allclose(squeeze(x), squeeze(t).numpy()))

        x = np.random.randn(1, 4, 1, 5)
        t = tf.constant(x)
        self.assertTrue(np.allclose(squeeze(x, axis=2), squeeze(t, axis=2).numpy()))

    @require_flax
    def test_squeeze_flax(self):
        x = np.random.randn(1, 3, 4)
        t = jnp.array(x)
        self.assertTrue(np.allclose(squeeze(x), np.asarray(squeeze(t))))

        x = np.random.randn(1, 4, 1, 5)
        t = jnp.array(x)
        self.assertTrue(np.allclose(squeeze(x, axis=2), np.asarray(squeeze(t, axis=2))))

    def test_expand_dims_numpy(self):
        x = np.random.randn(3, 4)
        self.assertTrue(np.allclose(expand_dims(x, axis=1), np.expand_dims(x, axis=1)))

    @require_torch
    def test_expand_dims_torch(self):
        x = np.random.randn(3, 4)
        t = torch.tensor(x)
        self.assertTrue(np.allclose(expand_dims(x, axis=1), expand_dims(t, axis=1).numpy()))

    @require_tf
    def test_expand_dims_tf(self):
        x = np.random.randn(3, 4)
        t = tf.constant(x)
        self.assertTrue(np.allclose(expand_dims(x, axis=1), expand_dims(t, axis=1).numpy()))

    @require_flax
    def test_expand_dims_flax(self):
        x = np.random.randn(3, 4)
        t = jnp.array(x)
        self.assertTrue(np.allclose(expand_dims(x, axis=1), np.asarray(expand_dims(t, axis=1))))