Spaces:
Runtime error
Runtime error
File size: 21,954 Bytes
a1d409e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 |
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Semantic segmentation
[[open-in-colab]]
<Youtube id="dKE8SIt9C-w"/>
Semantic segmentation assigns a label or class to each individual pixel of an image. There are several types of segmentation, and in the case of semantic segmentation, no distinction is made between unique instances of the same object. Both objects are given the same label (for example, "car" instead of "car-1" and "car-2"). Common real-world applications of semantic segmentation include training self-driving cars to identify pedestrians and important traffic information, identifying cells and abnormalities in medical imagery, and monitoring environmental changes from satellite imagery.
This guide will show you how to:
1. Finetune [SegFormer](https://huggingface.co/docs/transformers/main/en/model_doc/segformer#segformer) on the [SceneParse150](https://huggingface.co/datasets/scene_parse_150) dataset.
2. Use your finetuned model for inference.
<Tip>
The task illustrated in this tutorial is supported by the following model architectures:
<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->
[BEiT](../model_doc/beit), [Data2VecVision](../model_doc/data2vec-vision), [DPT](../model_doc/dpt), [MobileNetV2](../model_doc/mobilenet_v2), [MobileViT](../model_doc/mobilevit), [SegFormer](../model_doc/segformer), [UPerNet](../model_doc/upernet)
<!--End of the generated tip-->
</Tip>
Before you begin, make sure you have all the necessary libraries installed:
```bash
pip install -q datasets transformers evaluate
```
We encourage you to log in to your Hugging Face account so you can upload and share your model with the community. When prompted, enter your token to log in:
```py
>>> from huggingface_hub import notebook_login
>>> notebook_login()
```
## Load SceneParse150 dataset
Start by loading a smaller subset of the SceneParse150 dataset from the π€ Datasets library. This'll give you a chance to experiment and make sure everything works before spending more time training on the full dataset.
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("scene_parse_150", split="train[:50]")
```
Split the dataset's `train` split into a train and test set with the [`~datasets.Dataset.train_test_split`] method:
```py
>>> ds = ds.train_test_split(test_size=0.2)
>>> train_ds = ds["train"]
>>> test_ds = ds["test"]
```
Then take a look at an example:
```py
>>> train_ds[0]
{'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=512x683 at 0x7F9B0C201F90>,
'annotation': <PIL.PngImagePlugin.PngImageFile image mode=L size=512x683 at 0x7F9B0C201DD0>,
'scene_category': 368}
```
- `image`: a PIL image of the scene.
- `annotation`: a PIL image of the segmentation map, which is also the model's target.
- `scene_category`: a category id that describes the image scene like "kitchen" or "office". In this guide, you'll only need `image` and `annotation`, both of which are PIL images.
You'll also want to create a dictionary that maps a label id to a label class which will be useful when you set up the model later. Download the mappings from the Hub and create the `id2label` and `label2id` dictionaries:
```py
>>> import json
>>> from huggingface_hub import cached_download, hf_hub_url
>>> repo_id = "huggingface/label-files"
>>> filename = "ade20k-id2label.json"
>>> id2label = json.load(open(cached_download(hf_hub_url(repo_id, filename, repo_type="dataset")), "r"))
>>> id2label = {int(k): v for k, v in id2label.items()}
>>> label2id = {v: k for k, v in id2label.items()}
>>> num_labels = len(id2label)
```
## Preprocess
The next step is to load a SegFormer image processor to prepare the images and annotations for the model. Some datasets, like this one, use the zero-index as the background class. However, the background class isn't actually included in the 150 classes, so you'll need to set `reduce_labels=True` to subtract one from all the labels. The zero-index is replaced by `255` so it's ignored by SegFormer's loss function:
```py
>>> from transformers import AutoImageProcessor
>>> checkpoint = "nvidia/mit-b0"
>>> image_processor = AutoImageProcessor.from_pretrained(checkpoint, reduce_labels=True)
```
<frameworkcontent>
<pt>
It is common to apply some data augmentations to an image dataset to make a model more robust against overfitting. In this guide, you'll use the [`ColorJitter`](https://pytorch.org/vision/stable/generated/torchvision.transforms.ColorJitter.html) function from [torchvision](https://pytorch.org/vision/stable/index.html) to randomly change the color properties of an image, but you can also use any image library you like.
```py
>>> from torchvision.transforms import ColorJitter
>>> jitter = ColorJitter(brightness=0.25, contrast=0.25, saturation=0.25, hue=0.1)
```
Now create two preprocessing functions to prepare the images and annotations for the model. These functions convert the images into `pixel_values` and annotations to `labels`. For the training set, `jitter` is applied before providing the images to the image processor. For the test set, the image processor crops and normalizes the `images`, and only crops the `labels` because no data augmentation is applied during testing.
```py
>>> def train_transforms(example_batch):
... images = [jitter(x) for x in example_batch["image"]]
... labels = [x for x in example_batch["annotation"]]
... inputs = image_processor(images, labels)
... return inputs
>>> def val_transforms(example_batch):
... images = [x for x in example_batch["image"]]
... labels = [x for x in example_batch["annotation"]]
... inputs = image_processor(images, labels)
... return inputs
```
To apply the `jitter` over the entire dataset, use the π€ Datasets [`~datasets.Dataset.set_transform`] function. The transform is applied on the fly which is faster and consumes less disk space:
```py
>>> train_ds.set_transform(train_transforms)
>>> test_ds.set_transform(val_transforms)
```
</pt>
</frameworkcontent>
<frameworkcontent>
<tf>
It is common to apply some data augmentations to an image dataset to make a model more robust against overfitting.
In this guide, you'll use [`tf.image`](https://www.tensorflow.org/api_docs/python/tf/image) to randomly change the color properties of an image, but you can also use any image
library you like.
Define two separate transformation functions:
- training data transformations that include image augmentation
- validation data transformations that only transpose the images, since computer vision models in π€ Transformers expect channels-first layout
```py
>>> import tensorflow as tf
>>> def aug_transforms(image):
... image = tf.keras.utils.img_to_array(image)
... image = tf.image.random_brightness(image, 0.25)
... image = tf.image.random_contrast(image, 0.5, 2.0)
... image = tf.image.random_saturation(image, 0.75, 1.25)
... image = tf.image.random_hue(image, 0.1)
... image = tf.transpose(image, (2, 0, 1))
... return image
>>> def transforms(image):
... image = tf.keras.utils.img_to_array(image)
... image = tf.transpose(image, (2, 0, 1))
... return image
```
Next, create two preprocessing functions to prepare batches of images and annotations for the model. These functions apply
the image transformations and use the earlier loaded `image_processor` to convert the images into `pixel_values` and
annotations to `labels`. `ImageProcessor` also takes care of resizing and normalizing the images.
```py
>>> def train_transforms(example_batch):
... images = [aug_transforms(x.convert("RGB")) for x in example_batch["image"]]
... labels = [x for x in example_batch["annotation"]]
... inputs = image_processor(images, labels)
... return inputs
>>> def val_transforms(example_batch):
... images = [transforms(x.convert("RGB")) for x in example_batch["image"]]
... labels = [x for x in example_batch["annotation"]]
... inputs = image_processor(images, labels)
... return inputs
```
To apply the preprocessing transformations over the entire dataset, use the π€ Datasets [`~datasets.Dataset.set_transform`] function.
The transform is applied on the fly which is faster and consumes less disk space:
```py
>>> train_ds.set_transform(train_transforms)
>>> test_ds.set_transform(val_transforms)
```
</tf>
</frameworkcontent>
## Evaluate
Including a metric during training is often helpful for evaluating your model's performance. You can quickly load a evaluation method with the π€ [Evaluate](https://huggingface.co/docs/evaluate/index) library. For this task, load the [mean Intersection over Union](https://huggingface.co/spaces/evaluate-metric/accuracy) (IoU) metric (see the π€ Evaluate [quick tour](https://huggingface.co/docs/evaluate/a_quick_tour) to learn more about how to load and compute a metric):
```py
>>> import evaluate
>>> metric = evaluate.load("mean_iou")
```
Then create a function to [`~evaluate.EvaluationModule.compute`] the metrics. Your predictions need to be converted to
logits first, and then reshaped to match the size of the labels before you can call [`~evaluate.EvaluationModule.compute`]:
<frameworkcontent>
<pt>
```py
>>> def compute_metrics(eval_pred):
... with torch.no_grad():
... logits, labels = eval_pred
... logits_tensor = torch.from_numpy(logits)
... logits_tensor = nn.functional.interpolate(
... logits_tensor,
... size=labels.shape[-2:],
... mode="bilinear",
... align_corners=False,
... ).argmax(dim=1)
... pred_labels = logits_tensor.detach().cpu().numpy()
... metrics = metric.compute(
... predictions=pred_labels,
... references=labels,
... num_labels=num_labels,
... ignore_index=255,
... reduce_labels=False,
... )
... for key, value in metrics.items():
... if type(value) is np.ndarray:
... metrics[key] = value.tolist()
... return metrics
```
</pt>
</frameworkcontent>
<frameworkcontent>
<tf>
```py
>>> def compute_metrics(eval_pred):
... logits, labels = eval_pred
... logits = tf.transpose(logits, perm=[0, 2, 3, 1])
... logits_resized = tf.image.resize(
... logits,
... size=tf.shape(labels)[1:],
... method="bilinear",
... )
... pred_labels = tf.argmax(logits_resized, axis=-1)
... metrics = metric.compute(
... predictions=pred_labels,
... references=labels,
... num_labels=num_labels,
... ignore_index=-1,
... reduce_labels=image_processor.do_reduce_labels,
... )
... per_category_accuracy = metrics.pop("per_category_accuracy").tolist()
... per_category_iou = metrics.pop("per_category_iou").tolist()
... metrics.update({f"accuracy_{id2label[i]}": v for i, v in enumerate(per_category_accuracy)})
... metrics.update({f"iou_{id2label[i]}": v for i, v in enumerate(per_category_iou)})
... return {"val_" + k: v for k, v in metrics.items()}
```
</tf>
</frameworkcontent>
Your `compute_metrics` function is ready to go now, and you'll return to it when you setup your training.
## Train
<frameworkcontent>
<pt>
<Tip>
If you aren't familiar with finetuning a model with the [`Trainer`], take a look at the basic tutorial [here](../training#finetune-with-trainer)!
</Tip>
You're ready to start training your model now! Load SegFormer with [`AutoModelForSemanticSegmentation`], and pass the model the mapping between label ids and label classes:
```py
>>> from transformers import AutoModelForSemanticSegmentation, TrainingArguments, Trainer
>>> model = AutoModelForSemanticSegmentation.from_pretrained(checkpoint, id2label=id2label, label2id=label2id)
```
At this point, only three steps remain:
1. Define your training hyperparameters in [`TrainingArguments`]. It is important you don't remove unused columns because this'll drop the `image` column. Without the `image` column, you can't create `pixel_values`. Set `remove_unused_columns=False` to prevent this behavior! The only other required parameter is `output_dir` which specifies where to save your model. You'll push this model to the Hub by setting `push_to_hub=True` (you need to be signed in to Hugging Face to upload your model). At the end of each epoch, the [`Trainer`] will evaluate the IoU metric and save the training checkpoint.
2. Pass the training arguments to [`Trainer`] along with the model, dataset, tokenizer, data collator, and `compute_metrics` function.
3. Call [`~Trainer.train`] to finetune your model.
```py
>>> training_args = TrainingArguments(
... output_dir="segformer-b0-scene-parse-150",
... learning_rate=6e-5,
... num_train_epochs=50,
... per_device_train_batch_size=2,
... per_device_eval_batch_size=2,
... save_total_limit=3,
... evaluation_strategy="steps",
... save_strategy="steps",
... save_steps=20,
... eval_steps=20,
... logging_steps=1,
... eval_accumulation_steps=5,
... remove_unused_columns=False,
... push_to_hub=True,
... )
>>> trainer = Trainer(
... model=model,
... args=training_args,
... train_dataset=train_ds,
... eval_dataset=test_ds,
... compute_metrics=compute_metrics,
... )
>>> trainer.train()
```
Once training is completed, share your model to the Hub with the [`~transformers.Trainer.push_to_hub`] method so everyone can use your model:
```py
>>> trainer.push_to_hub()
```
</pt>
</frameworkcontent>
<frameworkcontent>
<tf>
<Tip>
If you are unfamiliar with fine-tuning a model with Keras, check out the [basic tutorial](./training#train-a-tensorflow-model-with-keras) first!
</Tip>
To fine-tune a model in TensorFlow, follow these steps:
1. Define the training hyperparameters, and set up an optimizer and a learning rate schedule.
2. Instantiate a pretrained model.
3. Convert a π€ Dataset to a `tf.data.Dataset`.
4. Compile your model.
5. Add callbacks to calculate metrics and upload your model to π€ Hub
6. Use the `fit()` method to run the training.
Start by defining the hyperparameters, optimizer and learning rate schedule:
```py
>>> from transformers import create_optimizer
>>> batch_size = 2
>>> num_epochs = 50
>>> num_train_steps = len(train_ds) * num_epochs
>>> learning_rate = 6e-5
>>> weight_decay_rate = 0.01
>>> optimizer, lr_schedule = create_optimizer(
... init_lr=learning_rate,
... num_train_steps=num_train_steps,
... weight_decay_rate=weight_decay_rate,
... num_warmup_steps=0,
... )
```
Then, load SegFormer with [`TFAutoModelForSemanticSegmentation`] along with the label mappings, and compile it with the
optimizer:
```py
>>> from transformers import TFAutoModelForSemanticSegmentation
>>> model = TFAutoModelForSemanticSegmentation.from_pretrained(
... checkpoint,
... id2label=id2label,
... label2id=label2id,
... )
>>> model.compile(optimizer=optimizer)
```
Convert your datasets to the `tf.data.Dataset` format using the [`~datasets.Dataset.to_tf_dataset`] and the [`DefaultDataCollator`]:
```py
>>> from transformers import DefaultDataCollator
>>> data_collator = DefaultDataCollator(return_tensors="tf")
>>> tf_train_dataset = train_ds.to_tf_dataset(
... columns=["pixel_values", "label"],
... shuffle=True,
... batch_size=batch_size,
... collate_fn=data_collator,
... )
>>> tf_eval_dataset = test_ds.to_tf_dataset(
... columns=["pixel_values", "label"],
... shuffle=True,
... batch_size=batch_size,
... collate_fn=data_collator,
... )
```
To compute the accuracy from the predictions and push your model to the π€ Hub, use [Keras callbacks](../main_classes/keras_callbacks).
Pass your `compute_metrics` function to [`KerasMetricCallback`],
and use the [`PushToHubCallback`] to upload the model:
```py
>>> from transformers.keras_callbacks import KerasMetricCallback, PushToHubCallback
>>> metric_callback = KerasMetricCallback(
... metric_fn=compute_metrics, eval_dataset=tf_eval_dataset, batch_size=batch_size, label_cols=["labels"]
... )
>>> push_to_hub_callback = PushToHubCallback(output_dir="scene_segmentation", tokenizer=image_processor)
>>> callbacks = [metric_callback, push_to_hub_callback]
```
Finally, you are ready to train your model! Call `fit()` with your training and validation datasets, the number of epochs,
and your callbacks to fine-tune the model:
```py
>>> model.fit(
... tf_train_dataset,
... validation_data=tf_eval_dataset,
... callbacks=callbacks,
... epochs=num_epochs,
... )
```
Congratulations! You have fine-tuned your model and shared it on the π€ Hub. You can now use it for inference!
</tf>
</frameworkcontent>
## Inference
Great, now that you've finetuned a model, you can use it for inference!
Load an image for inference:
```py
>>> image = ds[0]["image"]
>>> image
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/semantic-seg-image.png" alt="Image of bedroom"/>
</div>
<frameworkcontent>
<pt>
The simplest way to try out your finetuned model for inference is to use it in a [`pipeline`]. Instantiate a `pipeline` for image segmentation with your model, and pass your image to it:
```py
>>> from transformers import pipeline
>>> segmenter = pipeline("image-segmentation", model="my_awesome_seg_model")
>>> segmenter(image)
[{'score': None,
'label': 'wall',
'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062690>},
{'score': None,
'label': 'sky',
'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062A50>},
{'score': None,
'label': 'floor',
'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062B50>},
{'score': None,
'label': 'ceiling',
'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062A10>},
{'score': None,
'label': 'bed ',
'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062E90>},
{'score': None,
'label': 'windowpane',
'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062390>},
{'score': None,
'label': 'cabinet',
'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062550>},
{'score': None,
'label': 'chair',
'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062D90>},
{'score': None,
'label': 'armchair',
'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062E10>}]
```
You can also manually replicate the results of the `pipeline` if you'd like. Process the image with an image processor and place the `pixel_values` on a GPU:
```py
>>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # use GPU if available, otherwise use a CPU
>>> encoding = image_processor(image, return_tensors="pt")
>>> pixel_values = encoding.pixel_values.to(device)
```
Pass your input to the model and return the `logits`:
```py
>>> outputs = model(pixel_values=pixel_values)
>>> logits = outputs.logits.cpu()
```
Next, rescale the logits to the original image size:
```py
>>> upsampled_logits = nn.functional.interpolate(
... logits,
... size=image.size[::-1],
... mode="bilinear",
... align_corners=False,
... )
>>> pred_seg = upsampled_logits.argmax(dim=1)[0]
```
</pt>
</frameworkcontent>
<frameworkcontent>
<tf>
Load an image processor to preprocess the image and return the input as TensorFlow tensors:
```py
>>> from transformers import AutoImageProcessor
>>> image_processor = AutoImageProcessor.from_pretrained("MariaK/scene_segmentation")
>>> inputs = image_processor(image, return_tensors="tf")
```
Pass your input to the model and return the `logits`:
```py
>>> from transformers import TFAutoModelForSemanticSegmentation
>>> model = TFAutoModelForSemanticSegmentation.from_pretrained("MariaK/scene_segmentation")
>>> logits = model(**inputs).logits
```
Next, rescale the logits to the original image size and apply argmax on the class dimension:
```py
>>> logits = tf.transpose(logits, [0, 2, 3, 1])
>>> upsampled_logits = tf.image.resize(
... logits,
... # We reverse the shape of `image` because `image.size` returns width and height.
... image.size[::-1],
... )
>>> pred_seg = tf.math.argmax(upsampled_logits, axis=-1)[0]
```
</tf>
</frameworkcontent>
To visualize the results, load the [dataset color palette](https://github.com/tensorflow/models/blob/3f1ca33afe3c1631b733ea7e40c294273b9e406d/research/deeplab/utils/get_dataset_colormap.py#L51) as `ade_palette()` that maps each class to their RGB values. Then you can combine and plot your image and the predicted segmentation map:
```py
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> color_seg = np.zeros((pred_seg.shape[0], pred_seg.shape[1], 3), dtype=np.uint8)
>>> palette = np.array(ade_palette())
>>> for label, color in enumerate(palette):
... color_seg[pred_seg == label, :] = color
>>> color_seg = color_seg[..., ::-1] # convert to BGR
>>> img = np.array(image) * 0.5 + color_seg * 0.5 # plot the image with the segmentation map
>>> img = img.astype(np.uint8)
>>> plt.figure(figsize=(15, 10))
>>> plt.imshow(img)
>>> plt.show()
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/semantic-seg-preds.png" alt="Image of bedroom overlaid with segmentation map"/>
</div>
|