Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2018 Salesforce and HuggingFace Inc. team. | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gc | |
import unittest | |
from transformers import CTRLConfig, is_torch_available | |
from transformers.testing_utils import require_torch, slow, torch_device | |
from ...generation.test_utils import GenerationTesterMixin | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_torch_available(): | |
import torch | |
from transformers import ( | |
CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, | |
CTRLForSequenceClassification, | |
CTRLLMHeadModel, | |
CTRLModel, | |
) | |
class CTRLModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=14, | |
seq_length=7, | |
is_training=True, | |
use_token_type_ids=True, | |
use_input_mask=True, | |
use_labels=True, | |
use_mc_token_ids=True, | |
vocab_size=99, | |
hidden_size=32, | |
num_hidden_layers=5, | |
num_attention_heads=4, | |
intermediate_size=37, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=512, | |
type_vocab_size=16, | |
type_sequence_label_size=2, | |
initializer_range=0.02, | |
num_labels=3, | |
num_choices=4, | |
scope=None, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.seq_length = seq_length | |
self.is_training = is_training | |
self.use_token_type_ids = use_token_type_ids | |
self.use_input_mask = use_input_mask | |
self.use_labels = use_labels | |
self.use_mc_token_ids = use_mc_token_ids | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.type_vocab_size = type_vocab_size | |
self.type_sequence_label_size = type_sequence_label_size | |
self.initializer_range = initializer_range | |
self.num_labels = num_labels | |
self.num_choices = num_choices | |
self.scope = scope | |
self.pad_token_id = self.vocab_size - 1 | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
input_mask = None | |
if self.use_input_mask: | |
input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
token_type_ids = None | |
if self.use_token_type_ids: | |
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) | |
mc_token_ids = None | |
if self.use_mc_token_ids: | |
mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length) | |
sequence_labels = None | |
token_labels = None | |
choice_labels = None | |
if self.use_labels: | |
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) | |
choice_labels = ids_tensor([self.batch_size], self.num_choices) | |
config = self.get_config() | |
head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2) | |
return ( | |
config, | |
input_ids, | |
input_mask, | |
head_mask, | |
token_type_ids, | |
mc_token_ids, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
) | |
def get_config(self): | |
return CTRLConfig( | |
vocab_size=self.vocab_size, | |
n_embd=self.hidden_size, | |
n_layer=self.num_hidden_layers, | |
n_head=self.num_attention_heads, | |
# intermediate_size=self.intermediate_size, | |
# hidden_act=self.hidden_act, | |
# hidden_dropout_prob=self.hidden_dropout_prob, | |
# attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
n_positions=self.max_position_embeddings, | |
# type_vocab_size=self.type_vocab_size, | |
# initializer_range=self.initializer_range, | |
pad_token_id=self.pad_token_id, | |
) | |
def create_and_check_ctrl_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): | |
model = CTRLModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask) | |
model(input_ids, token_type_ids=token_type_ids) | |
result = model(input_ids) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
self.parent.assertEqual(len(result.past_key_values), config.n_layer) | |
def create_and_check_lm_head_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): | |
model = CTRLLMHeadModel(config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids) | |
self.parent.assertEqual(result.loss.shape, ()) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
( | |
config, | |
input_ids, | |
input_mask, | |
head_mask, | |
token_type_ids, | |
mc_token_ids, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
) = config_and_inputs | |
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask} | |
return config, inputs_dict | |
def create_and_check_ctrl_for_sequence_classification(self, config, input_ids, head_mask, token_type_ids, *args): | |
config.num_labels = self.num_labels | |
model = CTRLForSequenceClassification(config) | |
model.to(torch_device) | |
model.eval() | |
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
result = model(input_ids, token_type_ids=token_type_ids, labels=sequence_labels) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) | |
class CTRLModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () | |
all_generative_model_classes = (CTRLLMHeadModel,) if is_torch_available() else () | |
pipeline_model_mapping = ( | |
{ | |
"feature-extraction": CTRLModel, | |
"text-classification": CTRLForSequenceClassification, | |
"text-generation": CTRLLMHeadModel, | |
"zero-shot": CTRLForSequenceClassification, | |
} | |
if is_torch_available() | |
else {} | |
) | |
test_pruning = True | |
test_resize_embeddings = False | |
test_head_masking = False | |
# TODO: Fix the failed tests | |
def is_pipeline_test_to_skip( | |
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name | |
): | |
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": | |
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. | |
# `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny | |
# config could not be created. | |
return True | |
return False | |
def setUp(self): | |
self.model_tester = CTRLModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=CTRLConfig, n_embd=37) | |
def tearDown(self): | |
super().tearDown() | |
# clean-up as much as possible GPU memory occupied by PyTorch | |
gc.collect() | |
torch.cuda.empty_cache() | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_ctrl_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_ctrl_model(*config_and_inputs) | |
def test_ctrl_lm_head_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_lm_head_model(*config_and_inputs) | |
def test_model_from_pretrained(self): | |
for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = CTRLModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
class CTRLModelLanguageGenerationTest(unittest.TestCase): | |
def tearDown(self): | |
super().tearDown() | |
# clean-up as much as possible GPU memory occupied by PyTorch | |
gc.collect() | |
torch.cuda.empty_cache() | |
def test_lm_generate_ctrl(self): | |
model = CTRLLMHeadModel.from_pretrained("ctrl") | |
model.to(torch_device) | |
input_ids = torch.tensor( | |
[[11859, 0, 1611, 8]], dtype=torch.long, device=torch_device | |
) # Legal the president is | |
expected_output_ids = [ | |
11859, | |
0, | |
1611, | |
8, | |
5, | |
150, | |
26449, | |
2, | |
19, | |
348, | |
469, | |
3, | |
2595, | |
48, | |
20740, | |
246533, | |
246533, | |
19, | |
30, | |
5, | |
] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a | |
output_ids = model.generate(input_ids, do_sample=False) | |
self.assertListEqual(output_ids[0].tolist(), expected_output_ids) | |