Spaces:
Runtime error
Runtime error
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
from transformers import ( | |
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, | |
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, | |
Text2TextGenerationPipeline, | |
pipeline, | |
) | |
from transformers.testing_utils import is_pipeline_test, require_tf, require_torch | |
from transformers.utils import is_torch_available | |
from .test_pipelines_common import ANY | |
if is_torch_available(): | |
import torch | |
class Text2TextGenerationPipelineTests(unittest.TestCase): | |
model_mapping = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING | |
tf_model_mapping = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING | |
def get_test_pipeline(self, model, tokenizer, processor): | |
generator = Text2TextGenerationPipeline(model=model, tokenizer=tokenizer) | |
return generator, ["Something to write", "Something else"] | |
def run_pipeline_test(self, generator, _): | |
outputs = generator("Something there") | |
self.assertEqual(outputs, [{"generated_text": ANY(str)}]) | |
# These are encoder decoder, they don't just append to incoming string | |
self.assertFalse(outputs[0]["generated_text"].startswith("Something there")) | |
outputs = generator(["This is great !", "Something else"], num_return_sequences=2, do_sample=True) | |
self.assertEqual( | |
outputs, | |
[ | |
[{"generated_text": ANY(str)}, {"generated_text": ANY(str)}], | |
[{"generated_text": ANY(str)}, {"generated_text": ANY(str)}], | |
], | |
) | |
outputs = generator( | |
["This is great !", "Something else"], num_return_sequences=2, batch_size=2, do_sample=True | |
) | |
self.assertEqual( | |
outputs, | |
[ | |
[{"generated_text": ANY(str)}, {"generated_text": ANY(str)}], | |
[{"generated_text": ANY(str)}, {"generated_text": ANY(str)}], | |
], | |
) | |
with self.assertRaises(ValueError): | |
generator(4) | |
def test_small_model_pt(self): | |
generator = pipeline("text2text-generation", model="patrickvonplaten/t5-tiny-random", framework="pt") | |
# do_sample=False necessary for reproducibility | |
outputs = generator("Something there", do_sample=False) | |
self.assertEqual(outputs, [{"generated_text": ""}]) | |
num_return_sequences = 3 | |
outputs = generator( | |
"Something there", | |
num_return_sequences=num_return_sequences, | |
num_beams=num_return_sequences, | |
) | |
target_outputs = [ | |
{"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide Beide"}, | |
{"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide"}, | |
{"generated_text": ""}, | |
] | |
self.assertEqual(outputs, target_outputs) | |
outputs = generator("This is a test", do_sample=True, num_return_sequences=2, return_tensors=True) | |
self.assertEqual( | |
outputs, | |
[ | |
{"generated_token_ids": ANY(torch.Tensor)}, | |
{"generated_token_ids": ANY(torch.Tensor)}, | |
], | |
) | |
generator.tokenizer.pad_token_id = generator.model.config.eos_token_id | |
generator.tokenizer.pad_token = "<pad>" | |
outputs = generator( | |
["This is a test", "This is a second test"], | |
do_sample=True, | |
num_return_sequences=2, | |
batch_size=2, | |
return_tensors=True, | |
) | |
self.assertEqual( | |
outputs, | |
[ | |
[ | |
{"generated_token_ids": ANY(torch.Tensor)}, | |
{"generated_token_ids": ANY(torch.Tensor)}, | |
], | |
[ | |
{"generated_token_ids": ANY(torch.Tensor)}, | |
{"generated_token_ids": ANY(torch.Tensor)}, | |
], | |
], | |
) | |
def test_small_model_tf(self): | |
generator = pipeline("text2text-generation", model="patrickvonplaten/t5-tiny-random", framework="tf") | |
# do_sample=False necessary for reproducibility | |
outputs = generator("Something there", do_sample=False) | |
self.assertEqual(outputs, [{"generated_text": ""}]) | |