Spaces:
Runtime error
Runtime error
File size: 9,679 Bytes
5282eae 7c708d1 5282eae ab6ff71 5282eae 69242c7 5282eae f407227 a230c75 5282eae a230c75 5282eae 8fedd76 5282eae 8fedd76 5282eae ab6ff71 5282eae d3fbc73 5282eae f533bf3 5282eae 7c708d1 585d195 d3fbc73 ab6ff71 d3fbc73 5545c07 5282eae ab6ff71 d3fbc73 5282eae ab6ff71 5282eae f533bf3 5282eae ab6ff71 5282eae ab6ff71 5282eae ed32995 5282eae ed32995 5282eae ed32995 5282eae 1bddbe2 5282eae 1bddbe2 5282eae 1bddbe2 5282eae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
import os
os.system("cd open_flamingo && pip install .")
os.system("cd transformers && pip install .")
import numpy as np
import torch
from PIL import Image
from open_flamingo.train.distributed import init_distributed_device, world_info_from_env
import string
import cv2
import gradio as gr
import torch
from PIL import Image
from huggingface_hub import hf_hub_download, login
from open_flamingo.src.factory import create_model_and_transforms
flamingo, image_processor, tokenizer, vis_embed_size = create_model_and_transforms(
"ViT-L-14",
"datacomp_xl_s13b_b90k",
"facebook/opt-350m",
"facebook/opt-350m",
add_visual_grounding=True,
location_token_num=1000,
add_visual_token = True,
use_format_v2 = True,
)
checkpoint_path = hf_hub_download("chendl/mm", "checkpoint_opt350m_v2.pt")
checkpoint = torch.load(checkpoint_path, map_location="cpu")
model_state_dict = {}
for key in checkpoint.keys():
model_state_dict[key.replace("module.", "")] = checkpoint[key]
if "vision_encoder.logit_scale"in model_state_dict:
# previous checkpoint has some unnecessary weights
del model_state_dict["vision_encoder.logit_scale"]
del model_state_dict["vision_encoder.visual.proj"]
del model_state_dict["vision_encoder.visual.ln_post.weight"]
del model_state_dict["vision_encoder.visual.ln_post.bias"]
flamingo.load_state_dict(model_state_dict, strict=True)
def get_outputs(
model,
batch_images,
attention_mask,
max_generation_length,
min_generation_length,
num_beams,
length_penalty,
input_ids,
image_start_index_list=None,
image_nums=None,
bad_words_ids=None,
):
# and torch.cuda.amp.autocast(dtype=torch.float16)
with torch.inference_mode():
outputs = model.generate(
batch_images,
input_ids,
attention_mask=attention_mask,
max_new_tokens=max_generation_length,
min_length=min_generation_length,
num_beams=num_beams,
length_penalty=length_penalty,
image_start_index_list=image_start_index_list,
image_nums=image_nums,
bad_words_ids=bad_words_ids,
)
outputs = outputs[:, len(input_ids[0]) :]
return outputs
def generate(
idx,
image,
text,
vis_embed_size=256,
rank=0,
world_size=1,
):
if image is None:
raise gr.Error("Please upload an image.")
flamingo.eval()
loc_token_ids = []
for i in range(1000):
loc_token_ids.append(int(tokenizer(f"<loc_{i}>", add_special_tokens=False)["input_ids"][-1]))
media_token_id = tokenizer("<|#image#|>", add_special_tokens=False)["input_ids"][-1]
endofchunk_token_id = tokenizer("<|endofchunk|>", add_special_tokens=False)["input_ids"][-1]
endofmedia_token_id = tokenizer("<|#endofimage#|>", add_special_tokens=False)["input_ids"][-1]
pad_token_id = tokenizer(tokenizer.pad_token, add_special_tokens=False)["input_ids"][-1]
bos_token_id = tokenizer(tokenizer.bos_token, add_special_tokens=False)["input_ids"][-1]
all_ids = set(range(flamingo.lang_encoder.lm_head.out_features))
bad_words_ids = list(all_ids - set(loc_token_ids))
bad_words_ids = [[b] for b in bad_words_ids]
loc_word_ids = list(set(loc_token_ids))
loc_word_ids = [[b] for b in loc_word_ids]
min_loc_token_id = min(loc_token_ids)
max_loc_token_id = max(loc_token_ids)
image_ori = image
image = image.convert("RGB")
width = image.width
height = image.height
image = image.resize((224, 224))
batch_images = image_processor(image).unsqueeze(0).unsqueeze(1).unsqueeze(0)
if idx == 1:
prompt = [f"<|#image#|>{tokenizer.pad_token*vis_embed_size}<|#endofimage#|><|#obj#|>{text.rstrip('.')}<|#loc#|>"]
bad_words_ids = None
max_generation_length = 5
else:
prompt = [f"<|#image#|>{tokenizer.pad_token * vis_embed_size}<|#endofimage#|>{text.rstrip('.')}"]
bad_words_ids = loc_word_ids
max_generation_length = 30
encodings = tokenizer(
prompt,
padding="longest",
truncation=True,
return_tensors="pt",
max_length=2000,
)
input_ids = encodings["input_ids"]
attention_mask = encodings["attention_mask"]
image_start_index_list = ((input_ids == media_token_id).nonzero(as_tuple=True)[-1] + 1).tolist()
image_start_index_list = [[x] for x in image_start_index_list]
image_nums = [1] * len(input_ids)
outputs = get_outputs(
model=flamingo,
batch_images=batch_images,
attention_mask=attention_mask,
max_generation_length=max_generation_length,
min_generation_length=4,
num_beams=1,
length_penalty=1.0,
input_ids=input_ids,
bad_words_ids=bad_words_ids,
image_start_index_list=image_start_index_list,
image_nums=image_nums,
)
box = []
out_image = image_ori
for o in outputs[0]:
if o >= min_loc_token_id and o <= max_loc_token_id:
box.append(o.item() - min_loc_token_id)
if len(box) == 4:
break
# else:
# tqdm.write(f"output: {tokenizer.batch_decode(outputs)}")
# tqdm.write(f"prompt: {prompt}")
if len(box) == 4:
img = cv2.cvtColor(np.array(image_ori), cv2.COLOR_RGB2BGR)
out = cv2.rectangle(img, (int(box[0] * width / 1000), int(box[1] * height / 1000)),
(int(box[2] * width / 1000), int(box[3] * height / 1000)), color=(255, 0, 255), thickness=2)
out = cv2.cvtColor(out, cv2.COLOR_BGR2RGB)
out_image = Image.fromarray(out)
# else:
# tqdm.write(f"output: {tokenizer.batch_decode(outputs)}")
# tqdm.write(f"prompt: {prompt}")
gen_text = tokenizer.batch_decode(outputs)
if idx == 1:
return f"Output:{gen_text}", out_image
elif idx == 2:
return (f"Question: {text.strip()} Answer: {gen_text}")
else:
return (f"Output:{gen_text}")
with gr.Blocks() as demo:
gr.Markdown(
"""
🍜 Object Centric Pretraining Demo
In this demo we showcase the in-context learning and grounding capabilities of the Object-Centric Pretrained model, a large multimodal model. Note that we add two additional demonstrations to the ones presented to improve the demo experience.
The model is trained on an interleaved mixture of text, images and bounding box and is able to generate text conditioned on sequences of images/text.
"""
)
with gr.Accordion("See terms and conditions"):
gr.Markdown(
"""**Please read the following information carefully before proceeding.**This demo does NOT store any personal information on its users, and it does NOT store user queries.""")
with gr.Tab("📷 Image Captioning"):
with gr.Row():
query_image = gr.Image(type="pil")
with gr.Row():
chat_input = gr.Textbox(lines=1, label="Chat Input")
text_output = gr.Textbox(value="Output:", label="Model output")
run_btn = gr.Button("Run model")
def on_click_fn(img,text): return generate(0, img, text)
run_btn.click(on_click_fn, inputs=[query_image,chat_input], outputs=[text_output])
with gr.Tab("🦓 Grounding"):
with gr.Row():
with gr.Column(scale=1):
query_image = gr.Image(type="pil")
with gr.Column(scale=1):
out_image = gr.Image(type="pil")
with gr.Row():
chat_input = gr.Textbox(lines=1, label="Chat Input")
text_output = gr.Textbox(value="Output:", label="Model output")
run_btn = gr.Button("Run model")
def on_click_fn(img, text): return generate(1, img, text)
run_btn.click(on_click_fn, inputs=[query_image, chat_input], outputs=[text_output, out_image])
with gr.Tab("🔢 Counting objects"):
with gr.Row():
query_image = gr.Image(type="pil")
with gr.Row():
chat_input = gr.Textbox(lines=1, label="Chat Input")
text_output = gr.Textbox(value="Output:", label="Model output")
run_btn = gr.Button("Run model")
def on_click_fn(img,text): return generate(0, img, text)
run_btn.click(on_click_fn, inputs=[query_image, chat_input], outputs=[text_output])
with gr.Tab("🕵️ Visual Question Answering"):
with gr.Row():
query_image = gr.Image(type="pil")
with gr.Row():
question = gr.Textbox(lines=1, label="Question")
text_output = gr.Textbox(value="Output:", label="Model output")
run_btn = gr.Button("Run model")
def on_click_fn(img, txt): return generate(2, img, txt)
run_btn.click(
on_click_fn, inputs=[query_image, question], outputs=[text_output]
)
with gr.Tab("🌎 Custom"):
gr.Markdown(
"""### Customize the demonstration by uploading your own images and text samples.
### **Note: Any text prompt you use will be prepended with an 'Output:', so you don't need to include it in your prompt.**"""
)
with gr.Row():
query_image = gr.Image(type="pil")
with gr.Row():
question = gr.Textbox(lines=1, label="Question")
text_output = gr.Textbox(value="Output:", label="Model output")
run_btn = gr.Button("Run model")
def on_click_fn(img, txt): return generate(2, img, txt)
run_btn.click(
on_click_fn, inputs=[query_image, question], outputs=[text_output]
)
demo.queue(concurrency_count=1)
demo.launch() |