Spaces:
Running
Running
File size: 6,163 Bytes
d2b7e94 bed01bd d2b7e94 01e655b d2b7e94 bed01bd 02e90e4 d2b7e94 02e90e4 d2b7e94 84cfd61 01e655b bed01bd 01e655b 02e90e4 01e655b bed01bd 01e655b bed01bd 01e655b 02e90e4 01e655b 02e90e4 01e655b f83b1b7 01e655b 627d3d7 01e655b 1df74c6 01e655b 627d3d7 49bce5c ebc4336 01e655b 627d3d7 01e655b bed01bd f83b1b7 01e655b bed01bd 01e655b bed01bd 01e655b 374f426 84cfd61 bed01bd 01e655b 02e90e4 01e655b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import gc
import logging
from typing import Generator, Union
import numpy as np
import torch
from modules import config, models
from modules.ChatTTS import ChatTTS
from modules.devices import devices
from modules.speaker import Speaker
from modules.utils.cache import conditional_cache
from modules.utils.SeedContext import SeedContext
logger = logging.getLogger(__name__)
SAMPLE_RATE = 24000
def generate_audio(
text: str,
temperature: float = 0.3,
top_P: float = 0.7,
top_K: float = 20,
spk: Union[int, Speaker] = -1,
infer_seed: int = -1,
use_decoder: bool = True,
prompt1: str = "",
prompt2: str = "",
prefix: str = "",
):
(sample_rate, wav) = generate_audio_batch(
[text],
temperature=temperature,
top_P=top_P,
top_K=top_K,
spk=spk,
infer_seed=infer_seed,
use_decoder=use_decoder,
prompt1=prompt1,
prompt2=prompt2,
prefix=prefix,
)[0]
return (sample_rate, wav)
def parse_infer_params(
texts: list[str],
chat_tts: ChatTTS.Chat,
temperature: float = 0.3,
top_P: float = 0.7,
top_K: float = 20,
spk: Union[int, Speaker] = -1,
infer_seed: int = -1,
prompt1: str = "",
prompt2: str = "",
prefix: str = "",
):
params_infer_code = {
"spk_emb": None,
"temperature": temperature,
"top_P": top_P,
"top_K": top_K,
"prompt1": prompt1 or "",
"prompt2": prompt2 or "",
"prefix": prefix or "",
"repetition_penalty": 1.0,
"disable_tqdm": config.runtime_env_vars.off_tqdm,
}
if isinstance(spk, int):
with SeedContext(spk, True):
params_infer_code["spk_emb"] = chat_tts.sample_random_speaker()
logger.debug(("spk", spk))
elif isinstance(spk, Speaker):
if not isinstance(spk.emb, torch.Tensor):
raise ValueError("spk.pt is broken, please retrain the model.")
params_infer_code["spk_emb"] = spk.emb
logger.debug(("spk", spk.name))
else:
logger.warn(
f"spk must be int or Speaker, but: <{type(spk)}> {spk}, wiil set to default voice"
)
with SeedContext(2, True):
params_infer_code["spk_emb"] = chat_tts.sample_random_speaker()
logger.debug(
{
"text": texts,
"infer_seed": infer_seed,
"temperature": temperature,
"top_P": top_P,
"top_K": top_K,
"prompt1": prompt1 or "",
"prompt2": prompt2 or "",
"prefix": prefix or "",
}
)
return params_infer_code
@torch.inference_mode()
def generate_audio_batch(
texts: list[str],
temperature: float = 0.3,
top_P: float = 0.7,
top_K: float = 20,
spk: Union[int, Speaker] = -1,
infer_seed: int = -1,
use_decoder: bool = True,
prompt1: str = "",
prompt2: str = "",
prefix: str = "",
):
chat_tts = models.load_chat_tts()
params_infer_code = parse_infer_params(
texts=texts,
chat_tts=chat_tts,
temperature=temperature,
top_P=top_P,
top_K=top_K,
spk=spk,
infer_seed=infer_seed,
prompt1=prompt1,
prompt2=prompt2,
prefix=prefix,
)
with SeedContext(infer_seed, True):
wavs = chat_tts.generate_audio(
prompt=texts, params_infer_code=params_infer_code, use_decoder=use_decoder
)
if config.auto_gc:
devices.torch_gc()
gc.collect()
return [(SAMPLE_RATE, np.array(wav).flatten().astype(np.float32)) for wav in wavs]
# TODO: generate_audio_stream 也应该支持 lru cache
@torch.inference_mode()
def generate_audio_stream(
text: str,
temperature: float = 0.3,
top_P: float = 0.7,
top_K: float = 20,
spk: Union[int, Speaker] = -1,
infer_seed: int = -1,
use_decoder: bool = True,
prompt1: str = "",
prompt2: str = "",
prefix: str = "",
) -> Generator[tuple[int, np.ndarray], None, None]:
chat_tts = models.load_chat_tts()
texts = [text]
params_infer_code = parse_infer_params(
texts=texts,
chat_tts=chat_tts,
temperature=temperature,
top_P=top_P,
top_K=top_K,
spk=spk,
infer_seed=infer_seed,
prompt1=prompt1,
prompt2=prompt2,
prefix=prefix,
)
with SeedContext(infer_seed, True):
wavs_gen = chat_tts.generate_audio(
prompt=texts,
params_infer_code=params_infer_code,
use_decoder=use_decoder,
stream=True,
)
for wav in wavs_gen:
yield [SAMPLE_RATE, np.array(wav).flatten().astype(np.float32)]
if config.auto_gc:
devices.torch_gc()
gc.collect()
return
lru_cache_enabled = False
def setup_lru_cache():
global generate_audio_batch
global lru_cache_enabled
if lru_cache_enabled:
return
lru_cache_enabled = True
def should_cache(*args, **kwargs):
spk_seed = kwargs.get("spk", -1)
infer_seed = kwargs.get("infer_seed", -1)
return spk_seed != -1 and infer_seed != -1
lru_size = config.runtime_env_vars.lru_size
if isinstance(lru_size, int):
generate_audio_batch = conditional_cache(lru_size, should_cache)(
generate_audio_batch
)
logger.info(f"LRU cache enabled with size {lru_size}")
else:
logger.debug(f"LRU cache failed to enable, invalid size {lru_size}")
if __name__ == "__main__":
import soundfile as sf
# 测试batch生成
inputs = ["你好[lbreak]", "再见[lbreak]", "长度不同的文本片段[lbreak]"]
outputs = generate_audio_batch(inputs, spk=5, infer_seed=42)
for i, (sample_rate, wav) in enumerate(outputs):
print(i, sample_rate, wav.shape)
sf.write(f"batch_{i}.wav", wav, sample_rate, format="wav")
# 单独生成
for i, text in enumerate(inputs):
sample_rate, wav = generate_audio(text, spk=5, infer_seed=42)
print(i, sample_rate, wav.shape)
sf.write(f"one_{i}.wav", wav, sample_rate, format="wav")
|