Spaces:
Running
Running
File size: 6,928 Bytes
98f88b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
import torch, torchvision, transformers, collections
torchvision.set_video_backend('video_reader')
from dataclasses import asdict
from torchvision.io import read_video
from models import build_model_and_tokenizer, parse_args, fast_greedy_generate
logger = transformers.logging.get_logger('liveinfer')
# python -m demo.cli --resume_from_checkpoint ...
class LiveInfer:
def __init__(self, ) -> None:
args = parse_args()
self.model, self.tokenizer = build_model_and_tokenizer(is_training=False, set_vision_inside=True, **asdict(args))
self.model.to('cuda')
# visual
self.hidden_size = self.model.config.hidden_size
self.frame_fps = args.frame_fps
self.frame_interval = 1 / self.frame_fps
self.frame_resolution = self.model.config.frame_resolution
self.frame_num_tokens = self.model.config.frame_num_tokens
self.frame_v_placeholder = self.model.config.v_placeholder * self.frame_num_tokens
self.frame_token_interval_id = self.model.config.frame_token_interval_id
self.frame_placeholder_ids = torch.tensor(self.model.config.v_placeholder_id).repeat(self.model.config.frame_num_tokens).reshape(1,-1)
# generation
self.system_prompt = args.system_prompt
self.inplace_output_ids = torch.zeros(1, 100, device='cuda', dtype=torch.long)
self.frame_token_interval_threshold = 0.725
self.eos_token_id = self.model.config.eos_token_id
self._start_ids = self.tokenizer.apply_chat_template([{'role': 'system', 'content': self.system_prompt}], add_stream_prompt=True, return_tensors='pt').to('cuda')
self._added_stream_prompt_ids = self.tokenizer.apply_chat_template([{}], add_stream_prompt=True, return_tensors='pt').to('cuda')
self._added_stream_generation_ids = self.tokenizer.apply_chat_template([{}], add_stream_generation_prompt=True, return_tensors='pt').to('cuda')
# app
self.reset()
def _call_for_response(self, video_time, query):
if query is not None:
self.last_ids = self.tokenizer.apply_chat_template([{'role': 'user', 'content': query}], add_stream_query_prompt=True, add_generation_prompt=True, return_tensors='pt').to('cuda')
else:
assert self.last_ids == 933, f'{self.last_ids} != 933' # HACK, 933 = ]\n
self.last_ids = self._added_stream_generation_ids
inputs_embeds = self.model.get_input_embeddings()(self.last_ids)
output_ids, self.past_key_values = fast_greedy_generate(model=self.model, inputs_embeds=inputs_embeds, past_key_values=self.past_key_values, eos_token_id=self.eos_token_id, inplace_output_ids=self.inplace_output_ids)
self.last_ids = output_ids[:, -1:]
if query:
query = f'(Video Time = {video_time}s) User: {query}'
response = f'(Video Time = {video_time}s) Assistant:{self.tokenizer.decode(output_ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)}'
return query, response
def _call_for_streaming(self, ):
while self.frame_embeds_queue:
# 1. if query is before next frame, response
if self.query_queue and self.frame_embeds_queue[0][0] > self.query_queue[0][0]:
video_time, query = self.query_queue.popleft()
return video_time, query
video_time, frame_embeds = self.frame_embeds_queue.popleft()
if not self.past_key_values:
self.last_ids = self._start_ids
elif self.last_ids == self.eos_token_id:
self.last_ids = torch.cat([self.last_ids, self._added_stream_prompt_ids], dim=1)
inputs_embeds = torch.cat([
self.model.get_input_embeddings()(self.last_ids).view(1, -1, self.hidden_size),
frame_embeds.view(1, -1, self.hidden_size),
], dim=1)
outputs = self.model(inputs_embeds=inputs_embeds, use_cache=True, past_key_values=self.past_key_values)
self.past_key_values = outputs.past_key_values
# 2. if the same time, response after frame at that time
if self.query_queue and video_time >= self.query_queue[0][0]:
video_time, query = self.query_queue.popleft()
return video_time, query
# 3. if the next is frame but next is not interval, then response
next_score = outputs.logits[:,-1:].softmax(dim=-1)
if next_score[:,:,self.frame_token_interval_id] < self.frame_token_interval_threshold:
next_score[:,:,self.frame_token_interval_id].zero_()
self.last_ids = next_score.argmax(dim=-1)
if self.last_ids != self.frame_token_interval_id:
return video_time, None
return None, None
def reset(self, ):
self.query_queue = collections.deque()
self.frame_embeds_queue = collections.deque()
self.video_time = 0
self.last_frame_idx = -1
self.video_tensor = None
self.last_ids = torch.tensor([[]], device='cuda', dtype=torch.long)
self.past_key_values = None
def input_query_stream(self, query, history=None, video_time=None):
if video_time is None:
self.query_queue.append((self.video_time, query))
else:
self.query_queue.append((video_time, query))
if not self.past_key_values:
return f'(NOTE: No video stream here. Please select or upload a video. Then the assistant will answer "{query} (at {self.video_time}s)" in the video stream)'
return f'(NOTE: Received "{query}" (at {self.video_time}s). Please wait until previous frames have been processed)'
def input_video_stream(self, video_time):
frame_idx = int(video_time * self.frame_fps)
if frame_idx > self.last_frame_idx:
ranger = range(self.last_frame_idx + 1, frame_idx + 1)
frames_embeds = self.model.visual_embed(self.video_tensor[ranger]).split(self.frame_num_tokens)
self.frame_embeds_queue.extend([(r / self.frame_fps, frame_embeds) for r, frame_embeds in zip(ranger, frames_embeds)])
self.last_frame_idx = frame_idx
self.video_time = video_time
def load_video(self, video_path):
self.video_tensor = read_video(video_path, pts_unit='sec', output_format='TCHW')[0].to('cuda')
self.num_video_frames = self.video_tensor.size(0)
self.video_duration = self.video_tensor.size(0) / self.frame_fps
logger.warning(f'{video_path} -> {self.video_tensor.shape}, {self.frame_fps} FPS')
def __call__(self, ):
while not self.frame_embeds_queue:
continue
video_time, query = self._call_for_streaming()
response = None
if video_time is not None:
query, response = self._call_for_response(video_time, query)
return query, response |