File size: 3,314 Bytes
2f952f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import os
import argparse
from tqdm import tqdm
from random import shuffle
import json
config_template = {
  "train": {
    "log_interval": 200,
    "eval_interval": 1000,
    "seed": 1234,
    "epochs": 10000,
    "learning_rate": 2e-4,
    "betas": [0.8, 0.99],
    "eps": 1e-9,
    "batch_size": 12,
    "fp16_run": False,
    "lr_decay": 0.999875,
    "segment_size": 17920,
    "init_lr_ratio": 1,
    "warmup_epochs": 0,
    "c_mel": 45,
    "c_kl": 1.0,
    "use_sr": True,
    "max_speclen": 384,
    "port": "8001"
  },
  "data": {
    "training_files":"filelists/train.txt",
    "validation_files":"filelists/val.txt",
    "max_wav_value": 32768.0,
    "sampling_rate": 32000,
    "filter_length": 1280,
    "hop_length": 320,
    "win_length": 1280,
    "n_mel_channels": 80,
    "mel_fmin": 0.0,
    "mel_fmax": None
  },
  "model": {
    "inter_channels": 192,
    "hidden_channels": 192,
    "filter_channels": 768,
    "n_heads": 2,
    "n_layers": 6,
    "kernel_size": 3,
    "p_dropout": 0.1,
    "resblock": "1",
    "resblock_kernel_sizes": [3,7,11],
    "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
    "upsample_rates": [10,8,2,2],
    "upsample_initial_channel": 512,
    "upsample_kernel_sizes": [16,16,4,4],
    "n_layers_q": 3,
    "use_spectral_norm": False,
    "gin_channels": 256,
    "ssl_dim": 256,
    "n_speakers": 0,
  },
  "spk":{
    "nen": 0,
    "paimon": 1,
    "yunhao": 2
  }
}


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--train_list", type=str, default="./filelists/train.txt", help="path to train list")
    parser.add_argument("--val_list", type=str, default="./filelists/val.txt", help="path to val list")
    parser.add_argument("--test_list", type=str, default="./filelists/test.txt", help="path to test list")
    parser.add_argument("--source_dir", type=str, default="./dataset/32k", help="path to source dir")
    args = parser.parse_args()
    
    train = []
    val = []
    test = []
    idx = 0
    spk_dict = {}
    spk_id = 0
    for speaker in tqdm(os.listdir(args.source_dir)):
        spk_dict[speaker] = spk_id
        spk_id += 1
        wavs = [os.path.join(args.source_dir, speaker, i)for i in os.listdir(os.path.join(args.source_dir, speaker))]
        wavs = [i for i in wavs if i.endswith("wav")]
        shuffle(wavs)
        train += wavs[2:-10]
        val += wavs[:2]
        test += wavs[-10:]
    n_speakers = len(spk_dict.keys())*2
    shuffle(train)
    shuffle(val)
    shuffle(test)
            
    print("Writing", args.train_list)
    with open(args.train_list, "w") as f:
        for fname in tqdm(train):
            wavpath = fname
            f.write(wavpath + "\n")
        
    print("Writing", args.val_list)
    with open(args.val_list, "w") as f:
        for fname in tqdm(val):
            wavpath = fname
            f.write(wavpath + "\n")
            
    print("Writing", args.test_list)
    with open(args.test_list, "w") as f:
        for fname in tqdm(test):
            wavpath = fname
            f.write(wavpath + "\n")

    config_template["model"]["n_speakers"] = n_speakers
    config_template["spk"] = spk_dict
    print("Writing configs/config.json")
    with open("configs/config.json", "w") as f:
        json.dump(config_template, f, indent=2)