|
import os |
|
import json |
|
from .env import AttrDict |
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
import torch.nn as nn |
|
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d |
|
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm |
|
from .utils import init_weights, get_padding |
|
|
|
LRELU_SLOPE = 0.1 |
|
|
|
|
|
def load_model(model_path, device='cuda'): |
|
config_file = os.path.join(os.path.split(model_path)[0], 'config.json') |
|
with open(config_file) as f: |
|
data = f.read() |
|
|
|
global h |
|
json_config = json.loads(data) |
|
h = AttrDict(json_config) |
|
|
|
generator = Generator(h).to(device) |
|
|
|
cp_dict = torch.load(model_path) |
|
generator.load_state_dict(cp_dict['generator']) |
|
generator.eval() |
|
generator.remove_weight_norm() |
|
del cp_dict |
|
return generator, h |
|
|
|
|
|
class ResBlock1(torch.nn.Module): |
|
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)): |
|
super(ResBlock1, self).__init__() |
|
self.h = h |
|
self.convs1 = nn.ModuleList([ |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], |
|
padding=get_padding(kernel_size, dilation[0]))), |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], |
|
padding=get_padding(kernel_size, dilation[1]))), |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2], |
|
padding=get_padding(kernel_size, dilation[2]))) |
|
]) |
|
self.convs1.apply(init_weights) |
|
|
|
self.convs2 = nn.ModuleList([ |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, |
|
padding=get_padding(kernel_size, 1))), |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, |
|
padding=get_padding(kernel_size, 1))), |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, |
|
padding=get_padding(kernel_size, 1))) |
|
]) |
|
self.convs2.apply(init_weights) |
|
|
|
def forward(self, x): |
|
for c1, c2 in zip(self.convs1, self.convs2): |
|
xt = F.leaky_relu(x, LRELU_SLOPE) |
|
xt = c1(xt) |
|
xt = F.leaky_relu(xt, LRELU_SLOPE) |
|
xt = c2(xt) |
|
x = xt + x |
|
return x |
|
|
|
def remove_weight_norm(self): |
|
for l in self.convs1: |
|
remove_weight_norm(l) |
|
for l in self.convs2: |
|
remove_weight_norm(l) |
|
|
|
|
|
class ResBlock2(torch.nn.Module): |
|
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3)): |
|
super(ResBlock2, self).__init__() |
|
self.h = h |
|
self.convs = nn.ModuleList([ |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], |
|
padding=get_padding(kernel_size, dilation[0]))), |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], |
|
padding=get_padding(kernel_size, dilation[1]))) |
|
]) |
|
self.convs.apply(init_weights) |
|
|
|
def forward(self, x): |
|
for c in self.convs: |
|
xt = F.leaky_relu(x, LRELU_SLOPE) |
|
xt = c(xt) |
|
x = xt + x |
|
return x |
|
|
|
def remove_weight_norm(self): |
|
for l in self.convs: |
|
remove_weight_norm(l) |
|
|
|
|
|
class SineGen(torch.nn.Module): |
|
""" Definition of sine generator |
|
SineGen(samp_rate, harmonic_num = 0, |
|
sine_amp = 0.1, noise_std = 0.003, |
|
voiced_threshold = 0, |
|
flag_for_pulse=False) |
|
samp_rate: sampling rate in Hz |
|
harmonic_num: number of harmonic overtones (default 0) |
|
sine_amp: amplitude of sine-wavefrom (default 0.1) |
|
noise_std: std of Gaussian noise (default 0.003) |
|
voiced_thoreshold: F0 threshold for U/V classification (default 0) |
|
flag_for_pulse: this SinGen is used inside PulseGen (default False) |
|
Note: when flag_for_pulse is True, the first time step of a voiced |
|
segment is always sin(np.pi) or cos(0) |
|
""" |
|
|
|
def __init__(self, samp_rate, harmonic_num=0, |
|
sine_amp=0.1, noise_std=0.003, |
|
voiced_threshold=0, |
|
flag_for_pulse=False): |
|
super(SineGen, self).__init__() |
|
self.sine_amp = sine_amp |
|
self.noise_std = noise_std |
|
self.harmonic_num = harmonic_num |
|
self.dim = self.harmonic_num + 1 |
|
self.sampling_rate = samp_rate |
|
self.voiced_threshold = voiced_threshold |
|
self.flag_for_pulse = flag_for_pulse |
|
|
|
def _f02uv(self, f0): |
|
|
|
uv = (f0 > self.voiced_threshold).type(torch.float32) |
|
return uv |
|
|
|
def _f02sine(self, f0_values): |
|
""" f0_values: (batchsize, length, dim) |
|
where dim indicates fundamental tone and overtones |
|
""" |
|
|
|
|
|
rad_values = (f0_values / self.sampling_rate) % 1 |
|
|
|
|
|
rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], \ |
|
device=f0_values.device) |
|
rand_ini[:, 0] = 0 |
|
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini |
|
|
|
|
|
if not self.flag_for_pulse: |
|
|
|
|
|
|
|
|
|
|
|
|
|
tmp_over_one = torch.cumsum(rad_values, 1) % 1 |
|
tmp_over_one_idx = (torch.diff(tmp_over_one, dim=1)) < 0 |
|
cumsum_shift = torch.zeros_like(rad_values) |
|
cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0 |
|
|
|
sines = torch.sin(torch.cumsum(rad_values + cumsum_shift, dim=1) |
|
* 2 * np.pi) |
|
else: |
|
|
|
|
|
|
|
|
|
|
|
uv = self._f02uv(f0_values) |
|
uv_1 = torch.roll(uv, shifts=-1, dims=1) |
|
uv_1[:, -1, :] = 1 |
|
u_loc = (uv < 1) * (uv_1 > 0) |
|
|
|
|
|
tmp_cumsum = torch.cumsum(rad_values, dim=1) |
|
|
|
for idx in range(f0_values.shape[0]): |
|
temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :] |
|
temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :] |
|
|
|
|
|
tmp_cumsum[idx, :, :] = 0 |
|
tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum |
|
|
|
|
|
|
|
i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1) |
|
|
|
|
|
sines = torch.cos(i_phase * 2 * np.pi) |
|
return sines |
|
|
|
def forward(self, f0): |
|
""" sine_tensor, uv = forward(f0) |
|
input F0: tensor(batchsize=1, length, dim=1) |
|
f0 for unvoiced steps should be 0 |
|
output sine_tensor: tensor(batchsize=1, length, dim) |
|
output uv: tensor(batchsize=1, length, 1) |
|
""" |
|
with torch.no_grad(): |
|
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, |
|
device=f0.device) |
|
|
|
fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device)) |
|
|
|
|
|
sine_waves = self._f02sine(fn) * self.sine_amp |
|
|
|
|
|
|
|
|
|
uv = self._f02uv(f0) |
|
|
|
|
|
|
|
|
|
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3 |
|
noise = noise_amp * torch.randn_like(sine_waves) |
|
|
|
|
|
|
|
sine_waves = sine_waves * uv + noise |
|
return sine_waves, uv, noise |
|
|
|
|
|
class SourceModuleHnNSF(torch.nn.Module): |
|
""" SourceModule for hn-nsf |
|
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1, |
|
add_noise_std=0.003, voiced_threshod=0) |
|
sampling_rate: sampling_rate in Hz |
|
harmonic_num: number of harmonic above F0 (default: 0) |
|
sine_amp: amplitude of sine source signal (default: 0.1) |
|
add_noise_std: std of additive Gaussian noise (default: 0.003) |
|
note that amplitude of noise in unvoiced is decided |
|
by sine_amp |
|
voiced_threshold: threhold to set U/V given F0 (default: 0) |
|
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled) |
|
F0_sampled (batchsize, length, 1) |
|
Sine_source (batchsize, length, 1) |
|
noise_source (batchsize, length 1) |
|
uv (batchsize, length, 1) |
|
""" |
|
|
|
def __init__(self, sampling_rate, harmonic_num=0, sine_amp=0.1, |
|
add_noise_std=0.003, voiced_threshod=0): |
|
super(SourceModuleHnNSF, self).__init__() |
|
|
|
self.sine_amp = sine_amp |
|
self.noise_std = add_noise_std |
|
|
|
|
|
self.l_sin_gen = SineGen(sampling_rate, harmonic_num, |
|
sine_amp, add_noise_std, voiced_threshod) |
|
|
|
|
|
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1) |
|
self.l_tanh = torch.nn.Tanh() |
|
|
|
def forward(self, x): |
|
""" |
|
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled) |
|
F0_sampled (batchsize, length, 1) |
|
Sine_source (batchsize, length, 1) |
|
noise_source (batchsize, length 1) |
|
""" |
|
|
|
sine_wavs, uv, _ = self.l_sin_gen(x) |
|
sine_merge = self.l_tanh(self.l_linear(sine_wavs)) |
|
|
|
|
|
noise = torch.randn_like(uv) * self.sine_amp / 3 |
|
return sine_merge, noise, uv |
|
|
|
|
|
class Generator(torch.nn.Module): |
|
def __init__(self, h): |
|
super(Generator, self).__init__() |
|
self.h = h |
|
|
|
self.num_kernels = len(h["resblock_kernel_sizes"]) |
|
self.num_upsamples = len(h["upsample_rates"]) |
|
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(h["upsample_rates"])) |
|
self.m_source = SourceModuleHnNSF( |
|
sampling_rate=h["sampling_rate"], |
|
harmonic_num=8) |
|
self.noise_convs = nn.ModuleList() |
|
self.conv_pre = weight_norm(Conv1d(h["inter_channels"], h["upsample_initial_channel"], 7, 1, padding=3)) |
|
resblock = ResBlock1 if h["resblock"] == '1' else ResBlock2 |
|
self.ups = nn.ModuleList() |
|
for i, (u, k) in enumerate(zip(h["upsample_rates"], h["upsample_kernel_sizes"])): |
|
c_cur = h["upsample_initial_channel"] // (2 ** (i + 1)) |
|
self.ups.append(weight_norm( |
|
ConvTranspose1d(h["upsample_initial_channel"] // (2 ** i), h["upsample_initial_channel"] // (2 ** (i + 1)), |
|
k, u, padding=(k - u) // 2))) |
|
if i + 1 < len(h["upsample_rates"]): |
|
stride_f0 = np.prod(h["upsample_rates"][i + 1:]) |
|
self.noise_convs.append(Conv1d( |
|
1, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=stride_f0 // 2)) |
|
else: |
|
self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1)) |
|
self.resblocks = nn.ModuleList() |
|
for i in range(len(self.ups)): |
|
ch = h["upsample_initial_channel"] // (2 ** (i + 1)) |
|
for j, (k, d) in enumerate(zip(h["resblock_kernel_sizes"], h["resblock_dilation_sizes"])): |
|
self.resblocks.append(resblock(h, ch, k, d)) |
|
|
|
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3)) |
|
self.ups.apply(init_weights) |
|
self.conv_post.apply(init_weights) |
|
self.cond = nn.Conv1d(h['gin_channels'], h['upsample_initial_channel'], 1) |
|
|
|
def forward(self, x, f0, g=None): |
|
|
|
f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) |
|
|
|
har_source, noi_source, uv = self.m_source(f0) |
|
har_source = har_source.transpose(1, 2) |
|
x = self.conv_pre(x) |
|
x = x + self.cond(g) |
|
|
|
for i in range(self.num_upsamples): |
|
x = F.leaky_relu(x, LRELU_SLOPE) |
|
|
|
x = self.ups[i](x) |
|
x_source = self.noise_convs[i](har_source) |
|
|
|
x = x + x_source |
|
xs = None |
|
for j in range(self.num_kernels): |
|
if xs is None: |
|
xs = self.resblocks[i * self.num_kernels + j](x) |
|
else: |
|
xs += self.resblocks[i * self.num_kernels + j](x) |
|
x = xs / self.num_kernels |
|
x = F.leaky_relu(x) |
|
x = self.conv_post(x) |
|
x = torch.tanh(x) |
|
|
|
return x |
|
|
|
def remove_weight_norm(self): |
|
print('Removing weight norm...') |
|
for l in self.ups: |
|
remove_weight_norm(l) |
|
for l in self.resblocks: |
|
l.remove_weight_norm() |
|
remove_weight_norm(self.conv_pre) |
|
remove_weight_norm(self.conv_post) |
|
|
|
|
|
class DiscriminatorP(torch.nn.Module): |
|
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): |
|
super(DiscriminatorP, self).__init__() |
|
self.period = period |
|
norm_f = weight_norm if use_spectral_norm == False else spectral_norm |
|
self.convs = nn.ModuleList([ |
|
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), |
|
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), |
|
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), |
|
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), |
|
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))), |
|
]) |
|
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) |
|
|
|
def forward(self, x): |
|
fmap = [] |
|
|
|
|
|
b, c, t = x.shape |
|
if t % self.period != 0: |
|
n_pad = self.period - (t % self.period) |
|
x = F.pad(x, (0, n_pad), "reflect") |
|
t = t + n_pad |
|
x = x.view(b, c, t // self.period, self.period) |
|
|
|
for l in self.convs: |
|
x = l(x) |
|
x = F.leaky_relu(x, LRELU_SLOPE) |
|
fmap.append(x) |
|
x = self.conv_post(x) |
|
fmap.append(x) |
|
x = torch.flatten(x, 1, -1) |
|
|
|
return x, fmap |
|
|
|
|
|
class MultiPeriodDiscriminator(torch.nn.Module): |
|
def __init__(self, periods=None): |
|
super(MultiPeriodDiscriminator, self).__init__() |
|
self.periods = periods if periods is not None else [2, 3, 5, 7, 11] |
|
self.discriminators = nn.ModuleList() |
|
for period in self.periods: |
|
self.discriminators.append(DiscriminatorP(period)) |
|
|
|
def forward(self, y, y_hat): |
|
y_d_rs = [] |
|
y_d_gs = [] |
|
fmap_rs = [] |
|
fmap_gs = [] |
|
for i, d in enumerate(self.discriminators): |
|
y_d_r, fmap_r = d(y) |
|
y_d_g, fmap_g = d(y_hat) |
|
y_d_rs.append(y_d_r) |
|
fmap_rs.append(fmap_r) |
|
y_d_gs.append(y_d_g) |
|
fmap_gs.append(fmap_g) |
|
|
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs |
|
|
|
|
|
class DiscriminatorS(torch.nn.Module): |
|
def __init__(self, use_spectral_norm=False): |
|
super(DiscriminatorS, self).__init__() |
|
norm_f = weight_norm if use_spectral_norm == False else spectral_norm |
|
self.convs = nn.ModuleList([ |
|
norm_f(Conv1d(1, 128, 15, 1, padding=7)), |
|
norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)), |
|
norm_f(Conv1d(128, 256, 41, 2, groups=16, padding=20)), |
|
norm_f(Conv1d(256, 512, 41, 4, groups=16, padding=20)), |
|
norm_f(Conv1d(512, 1024, 41, 4, groups=16, padding=20)), |
|
norm_f(Conv1d(1024, 1024, 41, 1, groups=16, padding=20)), |
|
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), |
|
]) |
|
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) |
|
|
|
def forward(self, x): |
|
fmap = [] |
|
for l in self.convs: |
|
x = l(x) |
|
x = F.leaky_relu(x, LRELU_SLOPE) |
|
fmap.append(x) |
|
x = self.conv_post(x) |
|
fmap.append(x) |
|
x = torch.flatten(x, 1, -1) |
|
|
|
return x, fmap |
|
|
|
|
|
class MultiScaleDiscriminator(torch.nn.Module): |
|
def __init__(self): |
|
super(MultiScaleDiscriminator, self).__init__() |
|
self.discriminators = nn.ModuleList([ |
|
DiscriminatorS(use_spectral_norm=True), |
|
DiscriminatorS(), |
|
DiscriminatorS(), |
|
]) |
|
self.meanpools = nn.ModuleList([ |
|
AvgPool1d(4, 2, padding=2), |
|
AvgPool1d(4, 2, padding=2) |
|
]) |
|
|
|
def forward(self, y, y_hat): |
|
y_d_rs = [] |
|
y_d_gs = [] |
|
fmap_rs = [] |
|
fmap_gs = [] |
|
for i, d in enumerate(self.discriminators): |
|
if i != 0: |
|
y = self.meanpools[i - 1](y) |
|
y_hat = self.meanpools[i - 1](y_hat) |
|
y_d_r, fmap_r = d(y) |
|
y_d_g, fmap_g = d(y_hat) |
|
y_d_rs.append(y_d_r) |
|
fmap_rs.append(fmap_r) |
|
y_d_gs.append(y_d_g) |
|
fmap_gs.append(fmap_g) |
|
|
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs |
|
|
|
|
|
def feature_loss(fmap_r, fmap_g): |
|
loss = 0 |
|
for dr, dg in zip(fmap_r, fmap_g): |
|
for rl, gl in zip(dr, dg): |
|
loss += torch.mean(torch.abs(rl - gl)) |
|
|
|
return loss * 2 |
|
|
|
|
|
def discriminator_loss(disc_real_outputs, disc_generated_outputs): |
|
loss = 0 |
|
r_losses = [] |
|
g_losses = [] |
|
for dr, dg in zip(disc_real_outputs, disc_generated_outputs): |
|
r_loss = torch.mean((1 - dr) ** 2) |
|
g_loss = torch.mean(dg ** 2) |
|
loss += (r_loss + g_loss) |
|
r_losses.append(r_loss.item()) |
|
g_losses.append(g_loss.item()) |
|
|
|
return loss, r_losses, g_losses |
|
|
|
|
|
def generator_loss(disc_outputs): |
|
loss = 0 |
|
gen_losses = [] |
|
for dg in disc_outputs: |
|
l = torch.mean((1 - dg) ** 2) |
|
gen_losses.append(l) |
|
loss += l |
|
|
|
return loss, gen_losses |
|
|