|
import time |
|
import os |
|
import random |
|
import numpy as np |
|
import torch |
|
import torch.utils.data |
|
|
|
import commons |
|
from mel_processing import spectrogram_torch, spec_to_mel_torch |
|
from utils import load_wav_to_torch, load_filepaths_and_text, transform |
|
|
|
|
|
|
|
|
|
"""Multi speaker version""" |
|
|
|
|
|
class TextAudioSpeakerLoader(torch.utils.data.Dataset): |
|
""" |
|
1) loads audio, speaker_id, text pairs |
|
2) normalizes text and converts them to sequences of integers |
|
3) computes spectrograms from audio files. |
|
""" |
|
|
|
def __init__(self, audiopaths, hparams): |
|
self.audiopaths = load_filepaths_and_text(audiopaths) |
|
self.max_wav_value = hparams.data.max_wav_value |
|
self.sampling_rate = hparams.data.sampling_rate |
|
self.filter_length = hparams.data.filter_length |
|
self.hop_length = hparams.data.hop_length |
|
self.win_length = hparams.data.win_length |
|
self.sampling_rate = hparams.data.sampling_rate |
|
self.use_sr = hparams.train.use_sr |
|
self.spec_len = hparams.train.max_speclen |
|
self.spk_map = hparams.spk |
|
|
|
random.seed(1234) |
|
random.shuffle(self.audiopaths) |
|
|
|
def get_audio(self, filename): |
|
audio, sampling_rate = load_wav_to_torch(filename) |
|
if sampling_rate != self.sampling_rate: |
|
raise ValueError("{} SR doesn't match target {} SR".format( |
|
sampling_rate, self.sampling_rate)) |
|
audio_norm = audio / self.max_wav_value |
|
audio_norm = audio_norm.unsqueeze(0) |
|
spec_filename = filename.replace(".wav", ".spec.pt") |
|
if os.path.exists(spec_filename): |
|
spec = torch.load(spec_filename) |
|
else: |
|
spec = spectrogram_torch(audio_norm, self.filter_length, |
|
self.sampling_rate, self.hop_length, self.win_length, |
|
center=False) |
|
spec = torch.squeeze(spec, 0) |
|
torch.save(spec, spec_filename) |
|
|
|
spk = filename.split(os.sep)[-2] |
|
spk = torch.LongTensor([self.spk_map[spk]]) |
|
|
|
c = torch.load(filename + ".soft.pt").squeeze(0) |
|
c = torch.repeat_interleave(c, repeats=2, dim=1) |
|
|
|
f0 = np.load(filename + ".f0.npy") |
|
f0 = torch.FloatTensor(f0) |
|
lmin = min(c.size(-1), spec.size(-1), f0.shape[0]) |
|
assert abs(c.size(-1) - spec.size(-1)) < 4, (c.size(-1), spec.size(-1), f0.shape, filename) |
|
assert abs(lmin - spec.size(-1)) < 4, (c.size(-1), spec.size(-1), f0.shape) |
|
assert abs(lmin - c.size(-1)) < 4, (c.size(-1), spec.size(-1), f0.shape) |
|
spec, c, f0 = spec[:, :lmin], c[:, :lmin], f0[:lmin] |
|
audio_norm = audio_norm[:, :lmin * self.hop_length] |
|
_spec, _c, _audio_norm, _f0 = spec, c, audio_norm, f0 |
|
while spec.size(-1) < self.spec_len: |
|
spec = torch.cat((spec, _spec), -1) |
|
c = torch.cat((c, _c), -1) |
|
f0 = torch.cat((f0, _f0), -1) |
|
audio_norm = torch.cat((audio_norm, _audio_norm), -1) |
|
start = random.randint(0, spec.size(-1) - self.spec_len) |
|
end = start + self.spec_len |
|
spec = spec[:, start:end] |
|
c = c[:, start:end] |
|
f0 = f0[start:end] |
|
audio_norm = audio_norm[:, start * self.hop_length:end * self.hop_length] |
|
|
|
return c, f0, spec, audio_norm, spk |
|
|
|
def __getitem__(self, index): |
|
return self.get_audio(self.audiopaths[index][0]) |
|
|
|
def __len__(self): |
|
return len(self.audiopaths) |
|
|
|
|
|
class EvalDataLoader(torch.utils.data.Dataset): |
|
""" |
|
1) loads audio, speaker_id, text pairs |
|
2) normalizes text and converts them to sequences of integers |
|
3) computes spectrograms from audio files. |
|
""" |
|
|
|
def __init__(self, audiopaths, hparams): |
|
self.audiopaths = load_filepaths_and_text(audiopaths) |
|
self.max_wav_value = hparams.data.max_wav_value |
|
self.sampling_rate = hparams.data.sampling_rate |
|
self.filter_length = hparams.data.filter_length |
|
self.hop_length = hparams.data.hop_length |
|
self.win_length = hparams.data.win_length |
|
self.sampling_rate = hparams.data.sampling_rate |
|
self.use_sr = hparams.train.use_sr |
|
self.audiopaths = self.audiopaths[:5] |
|
self.spk_map = hparams.spk |
|
|
|
|
|
def get_audio(self, filename): |
|
audio, sampling_rate = load_wav_to_torch(filename) |
|
if sampling_rate != self.sampling_rate: |
|
raise ValueError("{} SR doesn't match target {} SR".format( |
|
sampling_rate, self.sampling_rate)) |
|
audio_norm = audio / self.max_wav_value |
|
audio_norm = audio_norm.unsqueeze(0) |
|
spec_filename = filename.replace(".wav", ".spec.pt") |
|
if os.path.exists(spec_filename): |
|
spec = torch.load(spec_filename) |
|
else: |
|
spec = spectrogram_torch(audio_norm, self.filter_length, |
|
self.sampling_rate, self.hop_length, self.win_length, |
|
center=False) |
|
spec = torch.squeeze(spec, 0) |
|
torch.save(spec, spec_filename) |
|
|
|
spk = filename.split(os.sep)[-2] |
|
spk = torch.LongTensor([self.spk_map[spk]]) |
|
|
|
c = torch.load(filename + ".soft.pt").squeeze(0) |
|
|
|
c = torch.repeat_interleave(c, repeats=2, dim=1) |
|
|
|
f0 = np.load(filename + ".f0.npy") |
|
f0 = torch.FloatTensor(f0) |
|
lmin = min(c.size(-1), spec.size(-1), f0.shape[0]) |
|
assert abs(c.size(-1) - spec.size(-1)) < 4, (c.size(-1), spec.size(-1), f0.shape) |
|
assert abs(f0.shape[0] - spec.shape[-1]) < 4, (c.size(-1), spec.size(-1), f0.shape) |
|
spec, c, f0 = spec[:, :lmin], c[:, :lmin], f0[:lmin] |
|
audio_norm = audio_norm[:, :lmin * self.hop_length] |
|
|
|
return c, f0, spec, audio_norm, spk |
|
|
|
def __getitem__(self, index): |
|
return self.get_audio(self.audiopaths[index][0]) |
|
|
|
def __len__(self): |
|
return len(self.audiopaths) |
|
|
|
|