|
import os |
|
import argparse |
|
from tqdm import tqdm |
|
from random import shuffle |
|
import json |
|
config_template = { |
|
"train": { |
|
"log_interval": 200, |
|
"eval_interval": 1000, |
|
"seed": 1234, |
|
"epochs": 10000, |
|
"learning_rate": 2e-4, |
|
"betas": [0.8, 0.99], |
|
"eps": 1e-9, |
|
"batch_size": 12, |
|
"fp16_run": False, |
|
"lr_decay": 0.999875, |
|
"segment_size": 17920, |
|
"init_lr_ratio": 1, |
|
"warmup_epochs": 0, |
|
"c_mel": 45, |
|
"c_kl": 1.0, |
|
"use_sr": True, |
|
"max_speclen": 384, |
|
"port": "8001" |
|
}, |
|
"data": { |
|
"training_files":"filelists/train.txt", |
|
"validation_files":"filelists/val.txt", |
|
"max_wav_value": 32768.0, |
|
"sampling_rate": 32000, |
|
"filter_length": 1280, |
|
"hop_length": 320, |
|
"win_length": 1280, |
|
"n_mel_channels": 80, |
|
"mel_fmin": 0.0, |
|
"mel_fmax": None |
|
}, |
|
"model": { |
|
"inter_channels": 192, |
|
"hidden_channels": 192, |
|
"filter_channels": 768, |
|
"n_heads": 2, |
|
"n_layers": 6, |
|
"kernel_size": 3, |
|
"p_dropout": 0.1, |
|
"resblock": "1", |
|
"resblock_kernel_sizes": [3,7,11], |
|
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]], |
|
"upsample_rates": [10,8,2,2], |
|
"upsample_initial_channel": 512, |
|
"upsample_kernel_sizes": [16,16,4,4], |
|
"n_layers_q": 3, |
|
"use_spectral_norm": False, |
|
"gin_channels": 256, |
|
"ssl_dim": 256, |
|
"n_speakers": 0, |
|
}, |
|
"spk":{ |
|
"nen": 0, |
|
"paimon": 1, |
|
"yunhao": 2 |
|
} |
|
} |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--train_list", type=str, default="./filelists/train.txt", help="path to train list") |
|
parser.add_argument("--val_list", type=str, default="./filelists/val.txt", help="path to val list") |
|
parser.add_argument("--test_list", type=str, default="./filelists/test.txt", help="path to test list") |
|
parser.add_argument("--source_dir", type=str, default="./dataset/32k", help="path to source dir") |
|
args = parser.parse_args() |
|
|
|
train = [] |
|
val = [] |
|
test = [] |
|
idx = 0 |
|
spk_dict = {} |
|
spk_id = 0 |
|
for speaker in tqdm(os.listdir(args.source_dir)): |
|
spk_dict[speaker] = spk_id |
|
spk_id += 1 |
|
wavs = [os.path.join(args.source_dir, speaker, i)for i in os.listdir(os.path.join(args.source_dir, speaker))] |
|
wavs = [i for i in wavs if i.endswith("wav")] |
|
shuffle(wavs) |
|
train += wavs[2:-10] |
|
val += wavs[:2] |
|
test += wavs[-10:] |
|
n_speakers = len(spk_dict.keys())*2 |
|
shuffle(train) |
|
shuffle(val) |
|
shuffle(test) |
|
|
|
print("Writing", args.train_list) |
|
with open(args.train_list, "w") as f: |
|
for fname in tqdm(train): |
|
wavpath = fname |
|
f.write(wavpath + "\n") |
|
|
|
print("Writing", args.val_list) |
|
with open(args.val_list, "w") as f: |
|
for fname in tqdm(val): |
|
wavpath = fname |
|
f.write(wavpath + "\n") |
|
|
|
print("Writing", args.test_list) |
|
with open(args.test_list, "w") as f: |
|
for fname in tqdm(test): |
|
wavpath = fname |
|
f.write(wavpath + "\n") |
|
|
|
config_template["model"]["n_speakers"] = n_speakers |
|
config_template["spk"] = spk_dict |
|
print("Writing configs/config.json") |
|
with open("configs/config.json", "w") as f: |
|
json.dump(config_template, f, indent=2) |
|
|