Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,3 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import matplotlib.pyplot as plt
|
3 |
-
import IPython.display as ipd
|
4 |
import os
|
5 |
import json
|
6 |
import math
|
@@ -8,39 +5,68 @@ import torch
|
|
8 |
from torch import nn
|
9 |
from torch.nn import functional as F
|
10 |
from torch.utils.data import DataLoader
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
import commons
|
12 |
import utils
|
13 |
from data_utils import TextAudioSpeakerLoader, TextAudioSpeakerCollate
|
14 |
from models import SynthesizerTrn
|
15 |
from text.symbols import symbols
|
16 |
from text import text_to_sequence
|
17 |
-
from scipy.io.wavfile import write
|
18 |
-
import numpy as np
|
19 |
|
20 |
-
# 加载情感字典
|
21 |
-
emotion_dict = json.load(open("configs/leo.json", "r"))
|
22 |
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
hps = utils.get_hparams_from_file("./configs/leo.json")
|
25 |
-
net_g = SynthesizerTrn(
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
_ = net_g.eval()
|
|
|
27 |
_ = utils.load_checkpoint("logs/leo/G_4000.pth", net_g, None)
|
28 |
|
29 |
-
#
|
|
|
|
|
|
|
|
|
30 |
def tts(txt, emotion, roma=False, length_scale=1):
|
|
|
31 |
if roma:
|
32 |
stn_tst = get_text_byroma(txt, hps)
|
33 |
else:
|
34 |
stn_tst = get_text(txt, hps)
|
35 |
-
|
36 |
with torch.no_grad():
|
37 |
x_tst = stn_tst.unsqueeze(0)
|
38 |
x_tst_lengths = torch.LongTensor([stn_tst.size(0)])
|
39 |
sid = torch.LongTensor([0])
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
random_emotion_root = "wavs"
|
44 |
while True:
|
45 |
rand_wav = random.sample(os.listdir(random_emotion_root), 1)[0]
|
46 |
if rand_wav.endswith('wav') and os.path.exists(f"{random_emotion_root}/{rand_wav}.emo.npy"):
|
@@ -48,27 +74,29 @@ def tts(txt, emotion, roma=False, length_scale=1):
|
|
48 |
emo = torch.FloatTensor(np.load(f"{random_emotion_root}/{rand_wav}.emo.npy")).unsqueeze(0)
|
49 |
print(f"{random_emotion_root}/{rand_wav}")
|
50 |
elif emotion.endswith("wav"):
|
51 |
-
# 从提供的音频中提取情感特征
|
52 |
import emotion_extract
|
53 |
emo = torch.FloatTensor(emotion_extract.extract_wav(emotion))
|
54 |
else:
|
55 |
print("emotion参数不正确")
|
56 |
-
|
57 |
-
audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=0.667, noise_scale_w=0.8, length_scale=1.2, emo=emo)[0][0,
|
58 |
-
|
59 |
ipd.display(ipd.Audio(audio, rate=hps.data.sampling_rate, normalize=False))
|
60 |
|
61 |
-
|
62 |
-
def run_tts(text, emotion, roma
|
63 |
tts(text, emotion, roma)
|
64 |
|
65 |
-
inputs = [
|
66 |
-
gr.inputs.Textbox(label="请输入文本"),
|
67 |
-
gr.inputs.Textbox(label="请输入参考音频路径或选择'random_sample'随机选择"),
|
68 |
-
gr.inputs.Checkbox(label="是否使用音素合成")
|
69 |
-
]
|
70 |
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
-
|
74 |
-
interface.launch()
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import json
|
3 |
import math
|
|
|
5 |
from torch import nn
|
6 |
from torch.nn import functional as F
|
7 |
from torch.utils.data import DataLoader
|
8 |
+
from scipy.io.wavfile import write
|
9 |
+
import numpy as np
|
10 |
+
|
11 |
+
import gradio as gr
|
12 |
+
import IPython.display as ipd
|
13 |
+
|
14 |
import commons
|
15 |
import utils
|
16 |
from data_utils import TextAudioSpeakerLoader, TextAudioSpeakerCollate
|
17 |
from models import SynthesizerTrn
|
18 |
from text.symbols import symbols
|
19 |
from text import text_to_sequence
|
|
|
|
|
20 |
|
|
|
|
|
21 |
|
22 |
+
def get_text(text, hps):
|
23 |
+
text_norm = text_to_sequence(text, hps.data.text_cleaners)
|
24 |
+
if hps.data.add_blank:
|
25 |
+
text_norm = commons.intersperse(text_norm, 0)
|
26 |
+
text_norm = torch.LongTensor(text_norm)
|
27 |
+
return text_norm
|
28 |
+
|
29 |
+
|
30 |
+
def get_text_byroma(text, hps):
|
31 |
+
text_norm = []
|
32 |
+
for i in text:
|
33 |
+
text_norm.append(symbols.index(i))
|
34 |
+
if hps.data.add_blank:
|
35 |
+
text_norm = commons.intersperse(text_norm, 0)
|
36 |
+
text_norm = torch.LongTensor(text_norm)
|
37 |
+
return text_norm
|
38 |
+
|
39 |
+
|
40 |
hps = utils.get_hparams_from_file("./configs/leo.json")
|
41 |
+
net_g = SynthesizerTrn(
|
42 |
+
len(symbols),
|
43 |
+
hps.data.filter_length // 2 + 1,
|
44 |
+
hps.train.segment_size // hps.data.hop_length,
|
45 |
+
n_speakers=hps.data.n_speakers,
|
46 |
+
**hps.model
|
47 |
+
)
|
48 |
_ = net_g.eval()
|
49 |
+
|
50 |
_ = utils.load_checkpoint("logs/leo/G_4000.pth", net_g, None)
|
51 |
|
52 |
+
# 随机抽取情感参考音频的根目录
|
53 |
+
random_emotion_root = "wavs"
|
54 |
+
emotion_dict = json.load(open("configs/leo.json", "r"))
|
55 |
+
|
56 |
+
|
57 |
def tts(txt, emotion, roma=False, length_scale=1):
|
58 |
+
"""emotion为参考情感音频路径 或random_sample(随机抽取)"""
|
59 |
if roma:
|
60 |
stn_tst = get_text_byroma(txt, hps)
|
61 |
else:
|
62 |
stn_tst = get_text(txt, hps)
|
|
|
63 |
with torch.no_grad():
|
64 |
x_tst = stn_tst.unsqueeze(0)
|
65 |
x_tst_lengths = torch.LongTensor([stn_tst.size(0)])
|
66 |
sid = torch.LongTensor([0])
|
67 |
+
if os.path.exists(f"{emotion}.emo.npy"):
|
68 |
+
emo = torch.FloatTensor(np.load(f"{emotion}.emo.npy")).unsqueeze(0)
|
69 |
+
elif emotion == "random_sample":
|
|
|
70 |
while True:
|
71 |
rand_wav = random.sample(os.listdir(random_emotion_root), 1)[0]
|
72 |
if rand_wav.endswith('wav') and os.path.exists(f"{random_emotion_root}/{rand_wav}.emo.npy"):
|
|
|
74 |
emo = torch.FloatTensor(np.load(f"{random_emotion_root}/{rand_wav}.emo.npy")).unsqueeze(0)
|
75 |
print(f"{random_emotion_root}/{rand_wav}")
|
76 |
elif emotion.endswith("wav"):
|
|
|
77 |
import emotion_extract
|
78 |
emo = torch.FloatTensor(emotion_extract.extract_wav(emotion))
|
79 |
else:
|
80 |
print("emotion参数不正确")
|
81 |
+
|
82 |
+
audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=0.667, noise_scale_w=0.8, length_scale=1.2, emo=emo)[0][0,0].data.float().numpy()
|
|
|
83 |
ipd.display(ipd.Audio(audio, rate=hps.data.sampling_rate, normalize=False))
|
84 |
|
85 |
+
|
86 |
+
def run_tts(text, emotion, roma):
|
87 |
tts(text, emotion, roma)
|
88 |
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
+
iface = gr.Interface(
|
91 |
+
fn=run_tts,
|
92 |
+
inputs=["text", "text", "checkbox"],
|
93 |
+
outputs="audio",
|
94 |
+
layout="vertical",
|
95 |
+
title="TTS Demo",
|
96 |
+
description="Generative TTS Demo with Emotional Control",
|
97 |
+
allow_flagging=False,
|
98 |
+
theme="huggingface",
|
99 |
+
flagging_dir="flagged",
|
100 |
+
)
|
101 |
|
102 |
+
iface.launch(inline=True)
|
|