File size: 8,581 Bytes
ce252ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
from diffusion_onnx import GaussianDiffusion
import os
import yaml
import torch
import torch.nn as nn
import numpy as np
from wavenet import WaveNet
import torch.nn.functional as F
import diffusion

class DotDict(dict):
    def __getattr__(*args):         
        val = dict.get(*args)         
        return DotDict(val) if type(val) is dict else val   

    __setattr__ = dict.__setitem__    
    __delattr__ = dict.__delitem__

    
def load_model_vocoder(
        model_path,
        device='cpu'):
    config_file = os.path.join(os.path.split(model_path)[0], 'config.yaml')
    with open(config_file, "r") as config:
        args = yaml.safe_load(config)
    args = DotDict(args)
    
    # load model
    model = Unit2Mel(
                args.data.encoder_out_channels, 
                args.model.n_spk,
                args.model.use_pitch_aug,
                128,
                args.model.n_layers,
                args.model.n_chans,
                args.model.n_hidden)
    
    print(' [Loading] ' + model_path)
    ckpt = torch.load(model_path, map_location=torch.device(device))
    model.to(device)
    model.load_state_dict(ckpt['model'])
    model.eval()
    return model, args


class Unit2Mel(nn.Module):
    def __init__(
            self,
            input_channel,
            n_spk,
            use_pitch_aug=False,
            out_dims=128,
            n_layers=20, 
            n_chans=384, 
            n_hidden=256):
        super().__init__()
        self.unit_embed = nn.Linear(input_channel, n_hidden)
        self.f0_embed = nn.Linear(1, n_hidden)
        self.volume_embed = nn.Linear(1, n_hidden)
        if use_pitch_aug:
            self.aug_shift_embed = nn.Linear(1, n_hidden, bias=False)
        else:
            self.aug_shift_embed = None
        self.n_spk = n_spk
        if n_spk is not None and n_spk > 1:
            self.spk_embed = nn.Embedding(n_spk, n_hidden)
            
        # diffusion
        self.decoder = GaussianDiffusion(out_dims, n_layers, n_chans, n_hidden)
        self.hidden_size = n_hidden
        self.speaker_map = torch.zeros((self.n_spk,1,1,n_hidden))
    
        

    def forward(self, units, mel2ph, f0, volume, g = None):
        
        '''
        input: 
            B x n_frames x n_unit
        return: 
            dict of B x n_frames x feat
        '''

        decoder_inp = F.pad(units, [0, 0, 1, 0])
        mel2ph_ = mel2ph.unsqueeze(2).repeat([1, 1, units.shape[-1]])
        units = torch.gather(decoder_inp, 1, mel2ph_)  # [B, T, H]

        x = self.unit_embed(units) + self.f0_embed((1 + f0.unsqueeze(-1) / 700).log()) + self.volume_embed(volume.unsqueeze(-1))

        if self.n_spk is not None and self.n_spk > 1:   # [N, S]  *  [S, B, 1, H]
            g = g.reshape((g.shape[0], g.shape[1], 1, 1, 1))  # [N, S, B, 1, 1]
            g = g * self.speaker_map  # [N, S, B, 1, H]
            g = torch.sum(g, dim=1) # [N, 1, B, 1, H]
            g = g.transpose(0, -1).transpose(0, -2).squeeze(0) # [B, H, N]
            x = x.transpose(1, 2) + g
            return x
        else:
            return x.transpose(1, 2)
        

    def init_spkembed(self, units, f0, volume, spk_id = None, spk_mix_dict = None, aug_shift = None,
                gt_spec=None, infer=True, infer_speedup=10, method='dpm-solver', k_step=300, use_tqdm=True):
        
        '''
        input: 
            B x n_frames x n_unit
        return: 
            dict of B x n_frames x feat
        '''
        x = self.unit_embed(units) + self.f0_embed((1+ f0 / 700).log()) + self.volume_embed(volume)
        if self.n_spk is not None and self.n_spk > 1:
            if spk_mix_dict is not None:
                spk_embed_mix = torch.zeros((1,1,self.hidden_size))
                for k, v in spk_mix_dict.items():
                    spk_id_torch = torch.LongTensor(np.array([[k]])).to(units.device)
                    spk_embeddd = self.spk_embed(spk_id_torch)
                    self.speaker_map[k] = spk_embeddd
                    spk_embed_mix = spk_embed_mix + v * spk_embeddd
                x = x + spk_embed_mix
            else:
                x = x + self.spk_embed(spk_id - 1)
        self.speaker_map = self.speaker_map.unsqueeze(0)
        self.speaker_map = self.speaker_map.detach()
        return x.transpose(1, 2)

    def OnnxExport(self, project_name=None, init_noise=None, export_encoder=True, export_denoise=True, export_pred=True, export_after=True):
        hubert_hidden_size = 768
        n_frames = 100
        hubert = torch.randn((1, n_frames, hubert_hidden_size))
        mel2ph = torch.arange(end=n_frames).unsqueeze(0).long()
        f0 = torch.randn((1, n_frames))
        volume = torch.randn((1, n_frames))
        spk_mix = []
        spks = {}
        if self.n_spk is not None and self.n_spk > 1:
            for i in range(self.n_spk):
                spk_mix.append(1.0/float(self.n_spk))
                spks.update({i:1.0/float(self.n_spk)})
        spk_mix = torch.tensor(spk_mix)
        spk_mix = spk_mix.repeat(n_frames, 1)
        orgouttt = self.init_spkembed(hubert, f0.unsqueeze(-1), volume.unsqueeze(-1), spk_mix_dict=spks)
        outtt = self.forward(hubert, mel2ph, f0, volume, spk_mix)
        if export_encoder:
            torch.onnx.export(
                self,
                (hubert, mel2ph, f0, volume, spk_mix),
                f"{project_name}_encoder.onnx",
                input_names=["hubert", "mel2ph", "f0", "volume", "spk_mix"],
                output_names=["mel_pred"],
                dynamic_axes={
                    "hubert": [1],
                    "f0": [1],
                    "volume": [1],
                    "mel2ph": [1],
                    "spk_mix": [0],
                },
                opset_version=16
            )
        
        self.decoder.OnnxExport(project_name, init_noise=init_noise, export_denoise=export_denoise, export_pred=export_pred, export_after=export_after)

    def ExportOnnx(self, project_name=None):
        hubert_hidden_size = 768
        n_frames = 100
        hubert = torch.randn((1, n_frames, hubert_hidden_size))
        mel2ph = torch.arange(end=n_frames).unsqueeze(0).long()
        f0 = torch.randn((1, n_frames))
        volume = torch.randn((1, n_frames))
        spk_mix = []
        spks = {}
        if self.n_spk is not None and self.n_spk > 1:
            for i in range(self.n_spk):
                spk_mix.append(1.0/float(self.n_spk))
                spks.update({i:1.0/float(self.n_spk)})
        spk_mix = torch.tensor(spk_mix)
        orgouttt = self.orgforward(hubert, f0.unsqueeze(-1), volume.unsqueeze(-1), spk_mix_dict=spks)
        outtt = self.forward(hubert, mel2ph, f0, volume, spk_mix)

        torch.onnx.export(
                self,
                (hubert, mel2ph, f0, volume, spk_mix),
                f"{project_name}_encoder.onnx",
                input_names=["hubert", "mel2ph", "f0", "volume", "spk_mix"],
                output_names=["mel_pred"],
                dynamic_axes={
                    "hubert": [1],
                    "f0": [1],
                    "volume": [1],
                    "mel2ph": [1]
                },
                opset_version=16
            )

        condition = torch.randn(1,self.decoder.n_hidden,n_frames)
        noise = torch.randn((1, 1, self.decoder.mel_bins, condition.shape[2]), dtype=torch.float32)
        pndm_speedup = torch.LongTensor([100])
        K_steps = torch.LongTensor([1000])
        self.decoder = torch.jit.script(self.decoder)
        self.decoder(condition, noise, pndm_speedup, K_steps)

        torch.onnx.export(
                self.decoder,
                (condition, noise, pndm_speedup, K_steps),
                f"{project_name}_diffusion.onnx",
                input_names=["condition", "noise", "pndm_speedup", "K_steps"],
                output_names=["mel"],
                dynamic_axes={
                    "condition": [2],
                    "noise": [3],
                },
                opset_version=16
            )


if __name__ == "__main__":
    project_name = "dddsp"
    model_path = f'{project_name}/model_500000.pt'

    model, _ = load_model_vocoder(model_path)

    # 分开Diffusion导出(需要使用MoeSS/MoeVoiceStudio或者自己编写Pndm/Dpm采样)
    model.OnnxExport(project_name, export_encoder=True, export_denoise=True, export_pred=True, export_after=True)

    # 合并Diffusion导出(Encoder和Diffusion分开,直接将Encoder的结果和初始噪声输入Diffusion即可)
    # model.ExportOnnx(project_name)