|
import os |
|
import argparse |
|
|
|
import torch |
|
import json |
|
from glob import glob |
|
|
|
from pyworld import pyworld |
|
from tqdm import tqdm |
|
from scipy.io import wavfile |
|
|
|
import utils |
|
from mel_processing import mel_spectrogram_torch |
|
|
|
import logging |
|
logging.getLogger('numba').setLevel(logging.WARNING) |
|
|
|
import parselmouth |
|
import librosa |
|
import numpy as np |
|
|
|
|
|
def get_f0(path,p_len=None, f0_up_key=0): |
|
x, _ = librosa.load(path, 32000) |
|
if p_len is None: |
|
p_len = x.shape[0]//320 |
|
else: |
|
assert abs(p_len-x.shape[0]//320) < 3, (path, p_len, x.shape) |
|
time_step = 320 / 32000 * 1000 |
|
f0_min = 50 |
|
f0_max = 1100 |
|
f0_mel_min = 1127 * np.log(1 + f0_min / 700) |
|
f0_mel_max = 1127 * np.log(1 + f0_max / 700) |
|
|
|
f0 = parselmouth.Sound(x, 32000).to_pitch_ac( |
|
time_step=time_step / 1000, voicing_threshold=0.6, |
|
pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency'] |
|
|
|
pad_size=(p_len - len(f0) + 1) // 2 |
|
if(pad_size>0 or p_len - len(f0) - pad_size>0): |
|
f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant') |
|
|
|
f0bak = f0.copy() |
|
f0 *= pow(2, f0_up_key / 12) |
|
f0_mel = 1127 * np.log(1 + f0 / 700) |
|
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (f0_mel_max - f0_mel_min) + 1 |
|
f0_mel[f0_mel <= 1] = 1 |
|
f0_mel[f0_mel > 255] = 255 |
|
f0_coarse = np.rint(f0_mel).astype(np.int) |
|
return f0_coarse, f0bak |
|
|
|
def resize2d(x, target_len): |
|
source = np.array(x) |
|
source[source<0.001] = np.nan |
|
target = np.interp(np.arange(0, len(source)*target_len, len(source))/ target_len, np.arange(0, len(source)), source) |
|
res = np.nan_to_num(target) |
|
return res |
|
|
|
def compute_f0(path, c_len): |
|
x, sr = librosa.load(path, sr=32000) |
|
f0, t = pyworld.dio( |
|
x.astype(np.double), |
|
fs=sr, |
|
f0_ceil=800, |
|
frame_period=1000 * 320 / sr, |
|
) |
|
f0 = pyworld.stonemask(x.astype(np.double), f0, t, 32000) |
|
for index, pitch in enumerate(f0): |
|
f0[index] = round(pitch, 1) |
|
assert abs(c_len - x.shape[0]//320) < 3, (c_len, f0.shape) |
|
|
|
return None, resize2d(f0, c_len) |
|
|
|
|
|
def process(filename): |
|
print(filename) |
|
save_name = filename+".soft.pt" |
|
if not os.path.exists(save_name): |
|
devive = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
wav, _ = librosa.load(filename, sr=16000) |
|
wav = torch.from_numpy(wav).unsqueeze(0).to(devive) |
|
c = utils.get_hubert_content(hmodel, wav) |
|
torch.save(c.cpu(), save_name) |
|
else: |
|
c = torch.load(save_name) |
|
f0path = filename+".f0.npy" |
|
if not os.path.exists(f0path): |
|
cf0, f0 = compute_f0(filename, c.shape[-1] * 2) |
|
np.save(f0path, f0) |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--in_dir", type=str, default="dataset/32k", help="path to input dir") |
|
args = parser.parse_args() |
|
|
|
print("Loading hubert for content...") |
|
hmodel = utils.get_hubert_model(0 if torch.cuda.is_available() else None) |
|
print("Loaded hubert.") |
|
|
|
filenames = glob(f'{args.in_dir}/*/*.wav', recursive=True) |
|
|
|
for filename in tqdm(filenames): |
|
process(filename) |
|
|