File size: 8,341 Bytes
cacb27a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa4f45e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cacb27a
fa4f45e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cacb27a
 
 
 
 
 
 
fa4f45e
cacb27a
 
 
 
 
fa4f45e
 
cacb27a
fa4f45e
 
 
cacb27a
 
 
 
 
 
 
 
 
 
 
 
fa4f45e
cacb27a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa4f45e
cacb27a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e08a54a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cacb27a
e08a54a
 
fa4f45e
e08a54a
fa4f45e
 
e08a54a
 
fa4f45e
e08a54a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import gradio as gr


import numpy as np
import cv2
from tqdm import tqdm

import torch
from pytorch3d.io.obj_io import load_obj
import tempfile
import main_mcc
import mcc_model
import util.misc as misc
from engine_mcc import prepare_data
from plyfile import PlyData, PlyElement

def run_inference(model, samples, device, temperature, args):
    model.eval()

    seen_xyz, valid_seen_xyz, unseen_xyz, unseen_rgb, labels, seen_images = prepare_data(
        samples, device, is_train=False, args=args, is_viz=True
    )
    pred_occupy = []
    pred_colors = []

    max_n_unseen_fwd = 2000

    model.cached_enc_feat = None
    num_passes = int(np.ceil(unseen_xyz.shape[1] / max_n_unseen_fwd))
    for p_idx in range(num_passes):
        p_start = p_idx     * max_n_unseen_fwd
        p_end = (p_idx + 1) * max_n_unseen_fwd
        cur_unseen_xyz = unseen_xyz[:, p_start:p_end]
        cur_unseen_rgb = unseen_rgb[:, p_start:p_end].zero_()
        cur_labels = labels[:, p_start:p_end].zero_()

        with torch.no_grad():
            _, pred = model(
                seen_images=seen_images,
                seen_xyz=seen_xyz,
                unseen_xyz=cur_unseen_xyz,
                unseen_rgb=cur_unseen_rgb,
                unseen_occupy=cur_labels,
                cache_enc=True,
                valid_seen_xyz=valid_seen_xyz,
            )
        if device == "cuda":
            pred_occupy.append(pred[..., 0].cuda())
        else:
            pred_occupy.append(pred[..., 0].cpu())
        if args.regress_color:
            pred_colors.append(pred[..., 1:].reshape((-1, 3)))
        else:
            pred_colors.append(
                (
                    torch.nn.Softmax(dim=2)(
                        pred[..., 1:].reshape((-1, 3, 256)) / temperature
                    ) * torch.linspace(0, 1, 256, device=pred.device)
                ).sum(axis=2)
            )
    
    pred_occupy = torch.cat(pred_occupy, dim=1)
    pred_occupy = torch.nn.Sigmoid()(pred_occupy)
    return torch.cat(pred_colors, dim=0).cpu().numpy(), pred_occupy.cpu().numpy(), unseen_xyz.cpu().numpy()

def pad_image(im, value):
    if im.shape[0] > im.shape[1]:
        diff = im.shape[0] - im.shape[1]
        return torch.cat([im, (torch.zeros((im.shape[0], diff, im.shape[2])) + value)], dim=1)
    else:
        diff = im.shape[1] - im.shape[0]
        return torch.cat([im, (torch.zeros((diff, im.shape[1], im.shape[2])) + value)], dim=0)

def backproject_depth_to_pointcloud(depth, rotation=np.eye(3), translation=np.zeros(3)):
    # Calculate the principal point as the center of the image
    principal_point = [depth.shape[1] / 2, depth.shape[0] / 2]
    intrinsics = get_intrinsics(depth.shape[0], depth.shape[1], principal_point)
    
    intrinsics = get_intrinsics(depth.shape[0], depth.shape[1], principal_point)
    # Get the depth map shape
    height, width = depth.shape

    # Create a matrix of pixel coordinates
    u, v = np.meshgrid(np.arange(width), np.arange(height))
    uv_homogeneous = np.stack((u, v, np.ones_like(u)), axis=-1).reshape(-1, 3)

    # Invert the intrinsic matrix
    inv_intrinsics = np.linalg.inv(intrinsics)

    # Convert depth to the camera coordinate system
    points_cam_homogeneous = np.dot(uv_homogeneous, inv_intrinsics.T) * depth.flatten()[:, np.newaxis]

    # Convert to 3D homogeneous coordinates
    points_cam_homogeneous = np.concatenate((points_cam_homogeneous, np.ones((len(points_cam_homogeneous), 1))), axis=1)

    # Apply the rotation and translation to get the 3D point cloud in the world coordinate system
    extrinsics = np.hstack((rotation, translation[:, np.newaxis]))
    pointcloud = np.dot(points_cam_homogeneous, extrinsics.T)
    pointcloud[:, 1:] *= -1
    
    # Reshape the point cloud back to the original depth map shape
    pointcloud = pointcloud[:, :3].reshape(height, width, 3)
    

    return pointcloud

# estimate camera intrinsics
def get_intrinsics(H,W, principal_point):
    """
    Intrinsics for a pinhole camera model.
    Assume fov of 55 degrees and central principal point
    of bounding box.
    """
    f = 0.5 * W / np.tan(0.5 * 55 * np.pi / 180.0)
    cx, cy = principal_point
    return np.array([[f, 0, cx],
                     [0, f, cy],
                     [0, 0, 1]])
    
def normalize(seen_xyz):
    seen_xyz = seen_xyz / (seen_xyz[torch.isfinite(seen_xyz.sum(dim=-1))].var(dim=0) ** 0.5).mean()
    seen_xyz = seen_xyz - seen_xyz[torch.isfinite(seen_xyz.sum(dim=-1))].mean(axis=0)
    return seen_xyz

def infer(
          image,
          depth_image,
          seg,
          granularity,
          temperature,
          ):
    
    args.viz_granularity = granularity
    
    rgb = image
    depth_image = cv2.imread(depth_image.name, -1)
    depth_image = depth_image.astype(np.float32) / 256
    seen_xyz = backproject_depth_to_pointcloud(depth_image)
    seen_rgb = (torch.tensor(rgb).float() / 255)[..., [2, 1, 0]]
    H, W = seen_rgb.shape[:2]
    seen_rgb = torch.nn.functional.interpolate(
        seen_rgb.permute(2, 0, 1)[None],
        size=[H, W],
        mode="bilinear",
        align_corners=False,
    )[0].permute(1, 2, 0)

    seg = cv2.imread(seg.name, cv2.IMREAD_UNCHANGED)
    mask = torch.tensor(cv2.resize(seg, (W, H))).bool()
    seen_xyz[~mask] = float('inf')
    seen_xyz = torch.tensor(seen_xyz).float()
    seen_xyz = normalize(seen_xyz)

    bottom, right = mask.nonzero().max(dim=0)[0]
    top, left = mask.nonzero().min(dim=0)[0]

    bottom = bottom + 40
    right = right + 40
    top = max(top - 40, 0)
    left = max(left - 40, 0)

    seen_xyz = seen_xyz[top:bottom+1, left:right+1]
    seen_rgb = seen_rgb[top:bottom+1, left:right+1]

    seen_xyz = pad_image(seen_xyz, float('inf'))
    seen_rgb = pad_image(seen_rgb, 0)

    seen_rgb = torch.nn.functional.interpolate(
        seen_rgb.permute(2, 0, 1)[None],
        size=[800, 800],
        mode="bilinear",
        align_corners=False,
    )

    seen_xyz = torch.nn.functional.interpolate(
        seen_xyz.permute(2, 0, 1)[None],
        size=[112, 112],
        mode="bilinear",
        align_corners=False,
    ).permute(0, 2, 3, 1)

    samples = [
        [seen_xyz, seen_rgb],
        [torch.zeros((20000, 3)), torch.zeros((20000, 3))],
    ]

    pred_colors, pred_occupy, unseen_xyz = run_inference(model, samples, device, temperature, args)
    _masks = pred_occupy > 0.1
    unseen_xyz = unseen_xyz[_masks]
    pred_colors = pred_colors[None, ...][_masks] * 255
    
    # Prepare data for PlyElement
    vertex = np.core.records.fromarrays(np.hstack((unseen_xyz, pred_colors)).transpose(), 
                                               names='x, y, z, red, green, blue', 
                                               formats='f8, f8, f8, u1, u1, u1')
    

    # Create PlyElement
    element = PlyElement.describe(vertex, 'vertex')
    
    # Save point cloud data to a temporary file
    with tempfile.NamedTemporaryFile(suffix=".ply", delete=False) as f:
        PlyData([element], text=True).write(f)
        temp_file_name = f.name

    return temp_file_name

if __name__ == '__main__':
    device = "cuda" if torch.cuda.is_available() else "cpu"
    
    parser = main_mcc.get_args_parser()
    parser.set_defaults(eval=True)

    args = parser.parse_args()
    
    model = mcc_model.get_mcc_model(
        occupancy_weight=1.0,
        rgb_weight=0.01,
        args=args,
    )
    
    if device == "cuda":
        model = model.cuda()

    misc.load_model(args=args, model_without_ddp=model, optimizer=None, loss_scaler=None)

    demo = gr.Interface(fn=infer, 
                        inputs=[gr.Image(label="Input Image"),
                                gr.File(label="Depth Image"),
                                gr.File(label="Segmentation File"),
                                gr.Slider(minimum=0.05, maximum=0.5, step=0.05, value=0.2, label="Grain Size"),
                                gr.Slider(minimum=0, maximum=1.0, step=0.1, value=0.1, label="Color Temperature")
                                ], 
                        outputs=[gr.outputs.File(label="Point Cloud")],
                        examples=[["demo/quest2.jpg", "demo/quest2_depth.png", "demo/quest2_seg.png", 0.2, 0.1]],
                        cache_examples=True)
    demo.launch(server_name="0.0.0.0", server_port=7860)