File size: 8,341 Bytes
cacb27a fa4f45e cacb27a fa4f45e cacb27a fa4f45e cacb27a fa4f45e cacb27a fa4f45e cacb27a fa4f45e cacb27a fa4f45e cacb27a e08a54a cacb27a e08a54a fa4f45e e08a54a fa4f45e e08a54a fa4f45e e08a54a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
import gradio as gr
import numpy as np
import cv2
from tqdm import tqdm
import torch
from pytorch3d.io.obj_io import load_obj
import tempfile
import main_mcc
import mcc_model
import util.misc as misc
from engine_mcc import prepare_data
from plyfile import PlyData, PlyElement
def run_inference(model, samples, device, temperature, args):
model.eval()
seen_xyz, valid_seen_xyz, unseen_xyz, unseen_rgb, labels, seen_images = prepare_data(
samples, device, is_train=False, args=args, is_viz=True
)
pred_occupy = []
pred_colors = []
max_n_unseen_fwd = 2000
model.cached_enc_feat = None
num_passes = int(np.ceil(unseen_xyz.shape[1] / max_n_unseen_fwd))
for p_idx in range(num_passes):
p_start = p_idx * max_n_unseen_fwd
p_end = (p_idx + 1) * max_n_unseen_fwd
cur_unseen_xyz = unseen_xyz[:, p_start:p_end]
cur_unseen_rgb = unseen_rgb[:, p_start:p_end].zero_()
cur_labels = labels[:, p_start:p_end].zero_()
with torch.no_grad():
_, pred = model(
seen_images=seen_images,
seen_xyz=seen_xyz,
unseen_xyz=cur_unseen_xyz,
unseen_rgb=cur_unseen_rgb,
unseen_occupy=cur_labels,
cache_enc=True,
valid_seen_xyz=valid_seen_xyz,
)
if device == "cuda":
pred_occupy.append(pred[..., 0].cuda())
else:
pred_occupy.append(pred[..., 0].cpu())
if args.regress_color:
pred_colors.append(pred[..., 1:].reshape((-1, 3)))
else:
pred_colors.append(
(
torch.nn.Softmax(dim=2)(
pred[..., 1:].reshape((-1, 3, 256)) / temperature
) * torch.linspace(0, 1, 256, device=pred.device)
).sum(axis=2)
)
pred_occupy = torch.cat(pred_occupy, dim=1)
pred_occupy = torch.nn.Sigmoid()(pred_occupy)
return torch.cat(pred_colors, dim=0).cpu().numpy(), pred_occupy.cpu().numpy(), unseen_xyz.cpu().numpy()
def pad_image(im, value):
if im.shape[0] > im.shape[1]:
diff = im.shape[0] - im.shape[1]
return torch.cat([im, (torch.zeros((im.shape[0], diff, im.shape[2])) + value)], dim=1)
else:
diff = im.shape[1] - im.shape[0]
return torch.cat([im, (torch.zeros((diff, im.shape[1], im.shape[2])) + value)], dim=0)
def backproject_depth_to_pointcloud(depth, rotation=np.eye(3), translation=np.zeros(3)):
# Calculate the principal point as the center of the image
principal_point = [depth.shape[1] / 2, depth.shape[0] / 2]
intrinsics = get_intrinsics(depth.shape[0], depth.shape[1], principal_point)
intrinsics = get_intrinsics(depth.shape[0], depth.shape[1], principal_point)
# Get the depth map shape
height, width = depth.shape
# Create a matrix of pixel coordinates
u, v = np.meshgrid(np.arange(width), np.arange(height))
uv_homogeneous = np.stack((u, v, np.ones_like(u)), axis=-1).reshape(-1, 3)
# Invert the intrinsic matrix
inv_intrinsics = np.linalg.inv(intrinsics)
# Convert depth to the camera coordinate system
points_cam_homogeneous = np.dot(uv_homogeneous, inv_intrinsics.T) * depth.flatten()[:, np.newaxis]
# Convert to 3D homogeneous coordinates
points_cam_homogeneous = np.concatenate((points_cam_homogeneous, np.ones((len(points_cam_homogeneous), 1))), axis=1)
# Apply the rotation and translation to get the 3D point cloud in the world coordinate system
extrinsics = np.hstack((rotation, translation[:, np.newaxis]))
pointcloud = np.dot(points_cam_homogeneous, extrinsics.T)
pointcloud[:, 1:] *= -1
# Reshape the point cloud back to the original depth map shape
pointcloud = pointcloud[:, :3].reshape(height, width, 3)
return pointcloud
# estimate camera intrinsics
def get_intrinsics(H,W, principal_point):
"""
Intrinsics for a pinhole camera model.
Assume fov of 55 degrees and central principal point
of bounding box.
"""
f = 0.5 * W / np.tan(0.5 * 55 * np.pi / 180.0)
cx, cy = principal_point
return np.array([[f, 0, cx],
[0, f, cy],
[0, 0, 1]])
def normalize(seen_xyz):
seen_xyz = seen_xyz / (seen_xyz[torch.isfinite(seen_xyz.sum(dim=-1))].var(dim=0) ** 0.5).mean()
seen_xyz = seen_xyz - seen_xyz[torch.isfinite(seen_xyz.sum(dim=-1))].mean(axis=0)
return seen_xyz
def infer(
image,
depth_image,
seg,
granularity,
temperature,
):
args.viz_granularity = granularity
rgb = image
depth_image = cv2.imread(depth_image.name, -1)
depth_image = depth_image.astype(np.float32) / 256
seen_xyz = backproject_depth_to_pointcloud(depth_image)
seen_rgb = (torch.tensor(rgb).float() / 255)[..., [2, 1, 0]]
H, W = seen_rgb.shape[:2]
seen_rgb = torch.nn.functional.interpolate(
seen_rgb.permute(2, 0, 1)[None],
size=[H, W],
mode="bilinear",
align_corners=False,
)[0].permute(1, 2, 0)
seg = cv2.imread(seg.name, cv2.IMREAD_UNCHANGED)
mask = torch.tensor(cv2.resize(seg, (W, H))).bool()
seen_xyz[~mask] = float('inf')
seen_xyz = torch.tensor(seen_xyz).float()
seen_xyz = normalize(seen_xyz)
bottom, right = mask.nonzero().max(dim=0)[0]
top, left = mask.nonzero().min(dim=0)[0]
bottom = bottom + 40
right = right + 40
top = max(top - 40, 0)
left = max(left - 40, 0)
seen_xyz = seen_xyz[top:bottom+1, left:right+1]
seen_rgb = seen_rgb[top:bottom+1, left:right+1]
seen_xyz = pad_image(seen_xyz, float('inf'))
seen_rgb = pad_image(seen_rgb, 0)
seen_rgb = torch.nn.functional.interpolate(
seen_rgb.permute(2, 0, 1)[None],
size=[800, 800],
mode="bilinear",
align_corners=False,
)
seen_xyz = torch.nn.functional.interpolate(
seen_xyz.permute(2, 0, 1)[None],
size=[112, 112],
mode="bilinear",
align_corners=False,
).permute(0, 2, 3, 1)
samples = [
[seen_xyz, seen_rgb],
[torch.zeros((20000, 3)), torch.zeros((20000, 3))],
]
pred_colors, pred_occupy, unseen_xyz = run_inference(model, samples, device, temperature, args)
_masks = pred_occupy > 0.1
unseen_xyz = unseen_xyz[_masks]
pred_colors = pred_colors[None, ...][_masks] * 255
# Prepare data for PlyElement
vertex = np.core.records.fromarrays(np.hstack((unseen_xyz, pred_colors)).transpose(),
names='x, y, z, red, green, blue',
formats='f8, f8, f8, u1, u1, u1')
# Create PlyElement
element = PlyElement.describe(vertex, 'vertex')
# Save point cloud data to a temporary file
with tempfile.NamedTemporaryFile(suffix=".ply", delete=False) as f:
PlyData([element], text=True).write(f)
temp_file_name = f.name
return temp_file_name
if __name__ == '__main__':
device = "cuda" if torch.cuda.is_available() else "cpu"
parser = main_mcc.get_args_parser()
parser.set_defaults(eval=True)
args = parser.parse_args()
model = mcc_model.get_mcc_model(
occupancy_weight=1.0,
rgb_weight=0.01,
args=args,
)
if device == "cuda":
model = model.cuda()
misc.load_model(args=args, model_without_ddp=model, optimizer=None, loss_scaler=None)
demo = gr.Interface(fn=infer,
inputs=[gr.Image(label="Input Image"),
gr.File(label="Depth Image"),
gr.File(label="Segmentation File"),
gr.Slider(minimum=0.05, maximum=0.5, step=0.05, value=0.2, label="Grain Size"),
gr.Slider(minimum=0, maximum=1.0, step=0.1, value=0.1, label="Color Temperature")
],
outputs=[gr.outputs.File(label="Point Cloud")],
examples=[["demo/quest2.jpg", "demo/quest2_depth.png", "demo/quest2_seg.png", 0.2, 0.1]],
cache_examples=True)
demo.launch(server_name="0.0.0.0", server_port=7860)
|