MCC_slim / app.py
hugoycj
Add depth image support and point cloud generation
fa4f45e
raw
history blame
8.34 kB
import gradio as gr
import numpy as np
import cv2
from tqdm import tqdm
import torch
from pytorch3d.io.obj_io import load_obj
import tempfile
import main_mcc
import mcc_model
import util.misc as misc
from engine_mcc import prepare_data
from plyfile import PlyData, PlyElement
def run_inference(model, samples, device, temperature, args):
model.eval()
seen_xyz, valid_seen_xyz, unseen_xyz, unseen_rgb, labels, seen_images = prepare_data(
samples, device, is_train=False, args=args, is_viz=True
)
pred_occupy = []
pred_colors = []
max_n_unseen_fwd = 2000
model.cached_enc_feat = None
num_passes = int(np.ceil(unseen_xyz.shape[1] / max_n_unseen_fwd))
for p_idx in range(num_passes):
p_start = p_idx * max_n_unseen_fwd
p_end = (p_idx + 1) * max_n_unseen_fwd
cur_unseen_xyz = unseen_xyz[:, p_start:p_end]
cur_unseen_rgb = unseen_rgb[:, p_start:p_end].zero_()
cur_labels = labels[:, p_start:p_end].zero_()
with torch.no_grad():
_, pred = model(
seen_images=seen_images,
seen_xyz=seen_xyz,
unseen_xyz=cur_unseen_xyz,
unseen_rgb=cur_unseen_rgb,
unseen_occupy=cur_labels,
cache_enc=True,
valid_seen_xyz=valid_seen_xyz,
)
if device == "cuda":
pred_occupy.append(pred[..., 0].cuda())
else:
pred_occupy.append(pred[..., 0].cpu())
if args.regress_color:
pred_colors.append(pred[..., 1:].reshape((-1, 3)))
else:
pred_colors.append(
(
torch.nn.Softmax(dim=2)(
pred[..., 1:].reshape((-1, 3, 256)) / temperature
) * torch.linspace(0, 1, 256, device=pred.device)
).sum(axis=2)
)
pred_occupy = torch.cat(pred_occupy, dim=1)
pred_occupy = torch.nn.Sigmoid()(pred_occupy)
return torch.cat(pred_colors, dim=0).cpu().numpy(), pred_occupy.cpu().numpy(), unseen_xyz.cpu().numpy()
def pad_image(im, value):
if im.shape[0] > im.shape[1]:
diff = im.shape[0] - im.shape[1]
return torch.cat([im, (torch.zeros((im.shape[0], diff, im.shape[2])) + value)], dim=1)
else:
diff = im.shape[1] - im.shape[0]
return torch.cat([im, (torch.zeros((diff, im.shape[1], im.shape[2])) + value)], dim=0)
def backproject_depth_to_pointcloud(depth, rotation=np.eye(3), translation=np.zeros(3)):
# Calculate the principal point as the center of the image
principal_point = [depth.shape[1] / 2, depth.shape[0] / 2]
intrinsics = get_intrinsics(depth.shape[0], depth.shape[1], principal_point)
intrinsics = get_intrinsics(depth.shape[0], depth.shape[1], principal_point)
# Get the depth map shape
height, width = depth.shape
# Create a matrix of pixel coordinates
u, v = np.meshgrid(np.arange(width), np.arange(height))
uv_homogeneous = np.stack((u, v, np.ones_like(u)), axis=-1).reshape(-1, 3)
# Invert the intrinsic matrix
inv_intrinsics = np.linalg.inv(intrinsics)
# Convert depth to the camera coordinate system
points_cam_homogeneous = np.dot(uv_homogeneous, inv_intrinsics.T) * depth.flatten()[:, np.newaxis]
# Convert to 3D homogeneous coordinates
points_cam_homogeneous = np.concatenate((points_cam_homogeneous, np.ones((len(points_cam_homogeneous), 1))), axis=1)
# Apply the rotation and translation to get the 3D point cloud in the world coordinate system
extrinsics = np.hstack((rotation, translation[:, np.newaxis]))
pointcloud = np.dot(points_cam_homogeneous, extrinsics.T)
pointcloud[:, 1:] *= -1
# Reshape the point cloud back to the original depth map shape
pointcloud = pointcloud[:, :3].reshape(height, width, 3)
return pointcloud
# estimate camera intrinsics
def get_intrinsics(H,W, principal_point):
"""
Intrinsics for a pinhole camera model.
Assume fov of 55 degrees and central principal point
of bounding box.
"""
f = 0.5 * W / np.tan(0.5 * 55 * np.pi / 180.0)
cx, cy = principal_point
return np.array([[f, 0, cx],
[0, f, cy],
[0, 0, 1]])
def normalize(seen_xyz):
seen_xyz = seen_xyz / (seen_xyz[torch.isfinite(seen_xyz.sum(dim=-1))].var(dim=0) ** 0.5).mean()
seen_xyz = seen_xyz - seen_xyz[torch.isfinite(seen_xyz.sum(dim=-1))].mean(axis=0)
return seen_xyz
def infer(
image,
depth_image,
seg,
granularity,
temperature,
):
args.viz_granularity = granularity
rgb = image
depth_image = cv2.imread(depth_image.name, -1)
depth_image = depth_image.astype(np.float32) / 256
seen_xyz = backproject_depth_to_pointcloud(depth_image)
seen_rgb = (torch.tensor(rgb).float() / 255)[..., [2, 1, 0]]
H, W = seen_rgb.shape[:2]
seen_rgb = torch.nn.functional.interpolate(
seen_rgb.permute(2, 0, 1)[None],
size=[H, W],
mode="bilinear",
align_corners=False,
)[0].permute(1, 2, 0)
seg = cv2.imread(seg.name, cv2.IMREAD_UNCHANGED)
mask = torch.tensor(cv2.resize(seg, (W, H))).bool()
seen_xyz[~mask] = float('inf')
seen_xyz = torch.tensor(seen_xyz).float()
seen_xyz = normalize(seen_xyz)
bottom, right = mask.nonzero().max(dim=0)[0]
top, left = mask.nonzero().min(dim=0)[0]
bottom = bottom + 40
right = right + 40
top = max(top - 40, 0)
left = max(left - 40, 0)
seen_xyz = seen_xyz[top:bottom+1, left:right+1]
seen_rgb = seen_rgb[top:bottom+1, left:right+1]
seen_xyz = pad_image(seen_xyz, float('inf'))
seen_rgb = pad_image(seen_rgb, 0)
seen_rgb = torch.nn.functional.interpolate(
seen_rgb.permute(2, 0, 1)[None],
size=[800, 800],
mode="bilinear",
align_corners=False,
)
seen_xyz = torch.nn.functional.interpolate(
seen_xyz.permute(2, 0, 1)[None],
size=[112, 112],
mode="bilinear",
align_corners=False,
).permute(0, 2, 3, 1)
samples = [
[seen_xyz, seen_rgb],
[torch.zeros((20000, 3)), torch.zeros((20000, 3))],
]
pred_colors, pred_occupy, unseen_xyz = run_inference(model, samples, device, temperature, args)
_masks = pred_occupy > 0.1
unseen_xyz = unseen_xyz[_masks]
pred_colors = pred_colors[None, ...][_masks] * 255
# Prepare data for PlyElement
vertex = np.core.records.fromarrays(np.hstack((unseen_xyz, pred_colors)).transpose(),
names='x, y, z, red, green, blue',
formats='f8, f8, f8, u1, u1, u1')
# Create PlyElement
element = PlyElement.describe(vertex, 'vertex')
# Save point cloud data to a temporary file
with tempfile.NamedTemporaryFile(suffix=".ply", delete=False) as f:
PlyData([element], text=True).write(f)
temp_file_name = f.name
return temp_file_name
if __name__ == '__main__':
device = "cuda" if torch.cuda.is_available() else "cpu"
parser = main_mcc.get_args_parser()
parser.set_defaults(eval=True)
args = parser.parse_args()
model = mcc_model.get_mcc_model(
occupancy_weight=1.0,
rgb_weight=0.01,
args=args,
)
if device == "cuda":
model = model.cuda()
misc.load_model(args=args, model_without_ddp=model, optimizer=None, loss_scaler=None)
demo = gr.Interface(fn=infer,
inputs=[gr.Image(label="Input Image"),
gr.File(label="Depth Image"),
gr.File(label="Segmentation File"),
gr.Slider(minimum=0.05, maximum=0.5, step=0.05, value=0.2, label="Grain Size"),
gr.Slider(minimum=0, maximum=1.0, step=0.1, value=0.1, label="Color Temperature")
],
outputs=[gr.outputs.File(label="Point Cloud")],
examples=[["demo/quest2.jpg", "demo/quest2_depth.png", "demo/quest2_seg.png", 0.2, 0.1]],
cache_examples=True)
demo.launch(server_name="0.0.0.0", server_port=7860)