MCC_slim / mcc_model.py
hugoycj
Initial commit
cacb27a
raw
history blame
14.4 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# timm: https://github.com/rwightman/pytorch-image-models/tree/master/timm
# DeiT: https://github.com/facebookresearch/deit
# MAE: https://github.com/facebookresearch/mae
# --------------------------------------------------------
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.models.vision_transformer import PatchEmbed, Block, Mlp, DropPath
from util.pos_embed import get_2d_sincos_pos_embed
class MCCDecoderAttention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0., args=None):
super().__init__()
assert dim % num_heads == 0, 'dim should be divisible by num_heads'
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.args = args
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, unseen_size):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0)
attn = (q @ k.transpose(-2, -1)) * self.scale
mask = torch.zeros((1, 1, N, N), device=attn.device)
mask[:, :, :, -unseen_size:] = float('-inf')
for i in range(unseen_size):
mask[:, :, -(i + 1), -(i + 1)] = 0
attn = attn + mask
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class MCCDecoderBlock(nn.Module):
def __init__(
self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., init_values=None,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, args=None):
super().__init__()
self.args = args
self.norm1 = norm_layer(dim)
self.attn = MCCDecoderAttention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop, args=args)
self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x, unseen_size):
x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x), unseen_size)))
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
return x
class XYZPosEmbed(nn.Module):
""" Masked Autoencoder with VisionTransformer backbone
"""
def __init__(self, embed_dim):
super().__init__()
self.embed_dim = embed_dim
self.two_d_pos_embed = nn.Parameter(
torch.zeros(1, 64 + 1, embed_dim), requires_grad=False) # fixed sin-cos embedding
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.win_size = 8
self.pos_embed = nn.Linear(3, embed_dim)
self.blocks = nn.ModuleList([
Block(embed_dim, num_heads=12, mlp_ratio=2.0, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6))
for _ in range(1)
])
self.invalid_xyz_token = nn.Parameter(torch.zeros(embed_dim,))
self.initialize_weights()
def initialize_weights(self):
torch.nn.init.normal_(self.cls_token, std=.02)
two_d_pos_embed = get_2d_sincos_pos_embed(self.two_d_pos_embed.shape[-1], 8, cls_token=True)
self.two_d_pos_embed.data.copy_(torch.from_numpy(two_d_pos_embed).float().unsqueeze(0))
torch.nn.init.normal_(self.invalid_xyz_token, std=.02)
def forward(self, seen_xyz, valid_seen_xyz):
emb = self.pos_embed(seen_xyz)
emb[~valid_seen_xyz] = 0.0
emb[~valid_seen_xyz] += self.invalid_xyz_token
B, H, W, C = emb.shape
emb = emb.view(B, H // self.win_size, self.win_size, W // self.win_size, self.win_size, C)
emb = emb.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, self.win_size * self.win_size, C)
emb = emb + self.two_d_pos_embed[:, 1:, :]
cls_token = self.cls_token + self.two_d_pos_embed[:, :1, :]
cls_tokens = cls_token.expand(emb.shape[0], -1, -1)
emb = torch.cat((cls_tokens, emb), dim=1)
for _, blk in enumerate(self.blocks):
emb = blk(emb)
return emb[:, 0].view(B, (H // self.win_size) * (W // self.win_size), -1)
class DecodeXYZPosEmbed(nn.Module):
""" Masked Autoencoder with VisionTransformer backbone
"""
def __init__(self, embed_dim):
super().__init__()
self.embed_dim = embed_dim
self.pos_embed = nn.Linear(3, embed_dim)
def forward(self, unseen_xyz):
return self.pos_embed(unseen_xyz)
class MCC(nn.Module):
""" Masked Autoencoder with VisionTransformer backbone
"""
def __init__(self,
img_size=224, patch_size=16, in_chans=3,
embed_dim=1024, depth=24, num_heads=16,
decoder_embed_dim=512, decoder_depth=8, decoder_num_heads=16,
mlp_ratio=4., norm_layer=nn.LayerNorm,
rgb_weight=1.0, occupancy_weight=1.0, args=None):
super().__init__()
self.rgb_weight = rgb_weight
self.occupancy_weight = occupancy_weight
self.args = args
# --------------------------------------------------------------------------
# encoder specifics
self.patch_embed = PatchEmbed(img_size, patch_size, in_chans, embed_dim)
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.cls_token_xyz = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim), requires_grad=False) # fixed sin-cos embedding
self.xyz_pos_embed = XYZPosEmbed(embed_dim)
self.blocks = nn.ModuleList([
Block(
embed_dim, num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer,
drop_path=args.drop_path
) for i in range(depth)])
self.blocks_xyz = nn.ModuleList([
Block(
embed_dim, num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer,
drop_path=args.drop_path
) for i in range(depth)])
self.norm = norm_layer(embed_dim)
self.norm_xyz = norm_layer(embed_dim)
self.cached_enc_feat = None
# --------------------------------------------------------------------------
# decoder specifics
self.decoder_embed = nn.Linear(
embed_dim * 2,
decoder_embed_dim,
bias=True
)
self.decoder_xyz_pos_embed = DecodeXYZPosEmbed(decoder_embed_dim)
self.decoder_pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, decoder_embed_dim), requires_grad=False) # fixed sin-cos embedding
self.decoder_blocks = nn.ModuleList([
MCCDecoderBlock(
decoder_embed_dim, decoder_num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer,
drop_path=args.drop_path,
args=args,
) for i in range(decoder_depth)])
self.decoder_norm = norm_layer(decoder_embed_dim)
if self.args.regress_color:
self.decoder_pred = nn.Linear(decoder_embed_dim, 3 + 1, bias=True) # decoder to patch
else:
self.decoder_pred = nn.Linear(decoder_embed_dim, 256 * 3 + 1, bias=True) # decoder to patch
self.loss_occupy = nn.BCEWithLogitsLoss()
if self.args.regress_color:
self.loss_rgb = nn.MSELoss()
else:
self.loss_rgb = nn.CrossEntropyLoss()
self.initialize_weights()
def initialize_weights(self):
pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], int(self.patch_embed.num_patches**.5), cls_token=True)
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
decoder_pos_embed = get_2d_sincos_pos_embed(self.decoder_pos_embed.shape[-1], int(self.patch_embed.num_patches**.5), cls_token=True)
self.decoder_pos_embed.data.copy_(torch.from_numpy(decoder_pos_embed).float().unsqueeze(0))
# initialize patch_embed like nn.Linear (instead of nn.Conv2d)
w = self.patch_embed.proj.weight.data
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
# timm's trunc_normal_(std=.02) is effectively normal_(std=0.02) as cutoff is too big (2.)
torch.nn.init.normal_(self.cls_token, std=.02)
torch.nn.init.normal_(self.cls_token_xyz, std=.02)
# initialize nn.Linear and nn.LayerNorm
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
# we use xavier_uniform following official JAX ViT:
torch.nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def forward_encoder(self, x, seen_xyz, valid_seen_xyz):
# get tokens
x = self.patch_embed(x)
x = x + self.pos_embed[:, 1:, :]
y = self.xyz_pos_embed(seen_xyz, valid_seen_xyz)
##### forward E_XYZ #####
# append cls token
cls_token_xyz = self.cls_token_xyz
cls_tokens_xyz = cls_token_xyz.expand(y.shape[0], -1, -1)
y = torch.cat((cls_tokens_xyz, y), dim=1)
# apply Transformer blocks
for blk in self.blocks_xyz:
y = blk(y)
y = self.norm_xyz(y)
##### forward E_RGB #####
# append cls token
cls_token = self.cls_token + self.pos_embed[:, :1, :]
cls_tokens = cls_token.expand(x.shape[0], -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
# apply Transformer blocks
for blk in self.blocks:
x = blk(x)
x = self.norm(x)
# combine encodings
x = torch.cat([x, y], dim=2)
return x
def forward_decoder(self, x, unseen_xyz):
# embed tokens
x = self.decoder_embed(x)
x = x + self.decoder_pos_embed
# 3D pos embed
unseen_xyz = self.decoder_xyz_pos_embed(unseen_xyz)
x = torch.cat([x, unseen_xyz], dim=1)
# apply Transformer blocks
for blk in self.decoder_blocks:
x = blk(x, unseen_xyz.shape[1])
x = self.decoder_norm(x)
# predictor projection
pred = self.decoder_pred(x)
# remove cls & seen token
pred = pred[:, -unseen_xyz.shape[1]:, :]
return pred
def forward_loss(self, pred, unseen_occupy, unseen_rgb):
loss = self.loss_occupy(
pred[:, :, :1].reshape((-1, 1)),
unseen_occupy.reshape((-1, 1)).float()
) * self.occupancy_weight
if unseen_occupy.sum() > 0:
if self.args.regress_color:
pred_rgb = pred[:, :, 1:][unseen_occupy.bool()]
gt_rgb = unseen_rgb[unseen_occupy.bool()]
else:
pred_rgb = pred[:, :, 1:][unseen_occupy.bool()].reshape((-1, 256))
gt_rgb = torch.round(unseen_rgb[unseen_occupy.bool()] * 255).long().reshape((-1,))
rgb_loss = self.loss_rgb(pred_rgb, gt_rgb) * self.rgb_weight
loss = loss + rgb_loss
return loss
def clear_cache(self):
self.cached_enc_feat = None
def forward(self, seen_images, seen_xyz, unseen_xyz, unseen_rgb, unseen_occupy, valid_seen_xyz,
cache_enc=False):
unseen_xyz = shrink_points_beyond_threshold(unseen_xyz, self.args.shrink_threshold)
if self.cached_enc_feat is None:
seen_images = preprocess_img(seen_images)
seen_xyz = shrink_points_beyond_threshold(seen_xyz, self.args.shrink_threshold)
latent = self.forward_encoder(seen_images, seen_xyz, valid_seen_xyz)
if cache_enc:
if self.cached_enc_feat is None:
self.cached_enc_feat = latent
else:
latent = self.cached_enc_feat
pred = self.forward_decoder(latent, unseen_xyz)
loss = self.forward_loss(pred, unseen_occupy, unseen_rgb)
return loss, pred
def get_mcc_model(**kwargs):
return MCC(
embed_dim=768, depth=12, num_heads=12,
decoder_embed_dim=512, decoder_depth=8, decoder_num_heads=16,
mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs
)
def shrink_points_beyond_threshold(xyz, threshold):
xyz = xyz.clone().detach()
dist = (xyz ** 2.0).sum(axis=-1) ** 0.5
affected = (dist > threshold) * torch.isfinite(dist)
xyz[affected] = xyz[affected] * (
threshold * (2.0 - threshold / dist[affected]) / dist[affected]
)[..., None]
return xyz
def preprocess_img(x):
if x.shape[2] != 224:
assert x.shape[2] == 800
x = F.interpolate(
x,
scale_factor=224./800.,
mode="bilinear",
)
resnet_mean = torch.tensor([0.485, 0.456, 0.406], device=x.device).reshape((1, 3, 1, 1))
resnet_std = torch.tensor([0.229, 0.224, 0.225], device=x.device).reshape((1, 3, 1, 1))
imgs_normed = (x - resnet_mean) / resnet_std
return imgs_normed
class LayerScale(nn.Module):
def __init__(self, dim, init_values=1e-5, inplace=False):
super().__init__()
self.inplace = inplace
self.gamma = nn.Parameter(init_values * torch.ones(dim))
def forward(self, x):
return x.mul_(self.gamma) if self.inplace else x * self.gamma