import os import gradio as gr from langchain.document_loaders import PyPDFLoader from langchain.llms import OpenAI from langchain.chains import load_qa_chain from langchain.chains.combine_documents import create_stuff_documents_chain from langchain_core.prompts import ChatPromptTemplate from langchain.text_splitter import RecursiveCharacterTextSplitter # Initialize GPT-4o-mini model llm = OpenAI(model_name="gpt-4o-mini") # Function to load PDF document def load_pdf(file): loader = PyPDFLoader(file.name) documents = loader.load() return documents # Summarization using the "stuff" method def summarize_pdf(file): docs = load_pdf(file) # Define a prompt for summarization prompt = ChatPromptTemplate.from_messages([("system", "Write a concise summary of the following:\n\n{context}")]) # Create summarization chain chain = create_stuff_documents_chain(llm, prompt) summary = chain.invoke({"context": docs}) return summary['result'] # Question Answering on PDF def qa_on_pdf(file, question): docs = load_pdf(file) # Create QA chain qa_chain = load_qa_chain(llm) response = qa_chain.run({"input_documents": docs, "question": question}) return response # Gradio interface def create_interface(): # Define the interface components with gr.Blocks() as interface: gr.Markdown("# Research Paper Summarization and QA") with gr.Row(): with gr.Column(): pdf_file = gr.File(label="Upload Research Paper PDF") summarize_btn = gr.Button("Summarize PDF") summary_output = gr.Textbox(label="Summary", lines=10) summarize_btn.click(summarize_pdf, inputs=[pdf_file], outputs=[summary_output]) with gr.Column(): qa_question = gr.Textbox(label="Ask a Question about the PDF", placeholder="Type your question here...") qa_btn = gr.Button("Submit Question") qa_output = gr.Textbox(label="Answer", lines=10) qa_btn.click(qa_on_pdf, inputs=[pdf_file, qa_question], outputs=[qa_output]) return interface # Launch Gradio app interface = create_interface() interface.launch()