Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# streamlit_app.py
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
import os
|
5 |
+
import openai
|
6 |
+
from langchain.vectorstores import Chroma
|
7 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
8 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
9 |
+
from langchain.chains import RetrievalQA
|
10 |
+
from langchain.prompts import PromptTemplate
|
11 |
+
from langchain_community.document_loaders import PyPDFLoader
|
12 |
+
from langchain_openai import ChatOpenAI
|
13 |
+
from langchain.callbacks import get_openai_callback
|
14 |
+
|
15 |
+
openai.api_key = os.getenv("OPENAI_API_KEY")
|
16 |
+
|
17 |
+
def process_pdf(file):
|
18 |
+
loader = PyPDFLoader(file)
|
19 |
+
documents = loader.load()
|
20 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
21 |
+
splits = text_splitter.split_documents(documents)
|
22 |
+
return splits
|
23 |
+
|
24 |
+
def create_vectorstore(splits):
|
25 |
+
embeddings = OpenAIEmbeddings()
|
26 |
+
vectorstore = Chroma.from_documents(splits, embeddings)
|
27 |
+
retriever = vectorstore.as_retriever()
|
28 |
+
return retriever
|
29 |
+
|
30 |
+
def summarize_document(docs, llm):
|
31 |
+
prompt = """
|
32 |
+
Write a concise summary of the following:
|
33 |
+
|
34 |
+
{context}
|
35 |
+
"""
|
36 |
+
chain = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=None)
|
37 |
+
with get_openai_callback() as cb:
|
38 |
+
summary = chain.invoke({"context": docs})
|
39 |
+
return summary, cb
|
40 |
+
|
41 |
+
def ask_question(query, retriever, llm):
|
42 |
+
prompt_template = PromptTemplate.from_template(
|
43 |
+
"""
|
44 |
+
You are an assistant for question-answering tasks.
|
45 |
+
Use the following pieces of retrieved context to answer the question.
|
46 |
+
If you don't know the answer, just say that you don't know.
|
47 |
+
Use three sentences maximum and keep the answer concise.
|
48 |
+
|
49 |
+
{context}
|
50 |
+
Question: {question}
|
51 |
+
Answer:
|
52 |
+
"""
|
53 |
+
)
|
54 |
+
qa_chain = RetrievalQA.from_chain_type(
|
55 |
+
llm=llm,
|
56 |
+
chain_type="stuff",
|
57 |
+
retriever=retriever,
|
58 |
+
return_source_documents=True
|
59 |
+
)
|
60 |
+
with get_openai_callback() as cb:
|
61 |
+
result = qa_chain.invoke(query)
|
62 |
+
return result, cb
|
63 |
+
|
64 |
+
st.title("Research Paper Summarization & Question Answering")
|
65 |
+
st.write("Upload a research paper (PDF), summarize its content, or ask specific questions related to the document.")
|
66 |
+
|
67 |
+
uploaded_file = st.file_uploader("Upload a PDF Document", type="pdf")
|
68 |
+
|
69 |
+
if uploaded_file is not None:
|
70 |
+
with st.spinner("Processing the document..."):
|
71 |
+
docs = process_pdf(uploaded_file)
|
72 |
+
st.success("Document processed successfully!")
|
73 |
+
|
74 |
+
llm = ChatOpenAI(model_name="gpt-4o-mini")
|
75 |
+
|
76 |
+
if st.button("Summarize Document"):
|
77 |
+
with st.spinner("Summarizing the document..."):
|
78 |
+
summary, cb = summarize_document(docs, llm)
|
79 |
+
st.subheader("Summary:")
|
80 |
+
st.write(summary)
|
81 |
+
st.write(f"Tokens Used: {cb.total_tokens}, Total Cost (USD): ${cb.total_cost:.5f}")
|
82 |
+
|
83 |
+
query = st.text_input("Ask a question related to the document:")
|
84 |
+
if st.button("Get Answer"):
|
85 |
+
with st.spinner("Retrieving the answer..."):
|
86 |
+
retriever = create_vectorstore(docs)
|
87 |
+
answer, cb = ask_question(query, retriever, llm)
|
88 |
+
st.subheader("Answer:")
|
89 |
+
st.write(answer)
|
90 |
+
st.write(f"Tokens Used: {cb.total_tokens}, Total Cost (USD): ${cb.total_cost:.5f}")
|
91 |
+
|
92 |
+
st.sidebar.title("Instructions")
|
93 |
+
st.sidebar.write("""
|
94 |
+
1. Upload a research paper in PDF format.
|
95 |
+
2. Choose to either summarize the entire document or ask a specific question about its content.
|
96 |
+
3. For summarization, click the 'Summarize Document' button.
|
97 |
+
4. For Q&A, type your question in the input box and click 'Get Answer'.
|
98 |
+
5. Wait a few seconds for the response.
|
99 |
+
""")
|