import gradio as gr import torch import os import uuid import torchaudio from einops import rearrange from stable_audio_tools import get_pretrained_model from stable_audio_tools.inference.generation import generate_diffusion_cond def gen_music(description): device = "cuda" if torch.cuda.is_available() else "cpu" # Fetch the Hugging Face token from the environment variable hf_token = os.getenv('HF_TOKEN') print(f"Hugging Face token: {hf_token}") # Download model model, model_config = get_pretrained_model("stabilityai/stable-audio-open-1.0") sample_rate = model_config["sample_rate"] sample_size = model_config["sample_size"] model = model.to(device) # Set up text and timing conditioning conditioning = [{ "prompt": f"{description}", "seconds_start": 0, "seconds_total": 30 }] # Generate stereo audio output = generate_diffusion_cond( model, conditioning=conditioning, sample_size=sample_size, device=device ) # Rearrange audio batch to a single sequence output = rearrange(output, "b d n -> d (b n)") # Peak normalize, clip, convert to int16, and save to file output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu() # Generate a unique filename for the output unique_filename = f"output_{uuid.uuid4().hex}.wav" print(f"Saving audio to file: {unique_filename}") # Save to file torchaudio.save(unique_filename, output, sample_rate) print(f"Audio saved: {unique_filename}") # Return the path to the generated audio file return unique_filename # Define a interface Gradio description = gr.Textbox(label="Description", placeholder="128 BPM tech house drum loop") output_path = gr.Audio(label="Generated Music", type="filepath") gr.Interface( fn=gen_music, inputs=[description], outputs=output_path, title="StableAudio Music Generation Demo", ).launch()