Spaces:
Runtime error
Runtime error
initial application
Browse files- app.py +39 -0
- paraphraser.py +189 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
from paraphraser import get_key_sentences, ParaphraseModel
|
4 |
+
|
5 |
+
paraphraser = ParaphraseModel()
|
6 |
+
|
7 |
+
|
8 |
+
# Add a model selector to the sidebar:
|
9 |
+
model = st.sidebar.selectbox(
|
10 |
+
'Select Model',
|
11 |
+
('T5-base', 'DistilT5-base', 'T5-small')
|
12 |
+
)
|
13 |
+
|
14 |
+
|
15 |
+
top_k = st.sidebar.slider('Top_K', 100, 300, 168)
|
16 |
+
|
17 |
+
top_p = st.sidebar.slider('Top_P', 0.0, 1.0, 0.95)
|
18 |
+
|
19 |
+
st.header("Bullet-point Summarization")
|
20 |
+
st.write(f'Model in use: {model}')
|
21 |
+
|
22 |
+
txt = st.text_area('Text to analyze', )
|
23 |
+
|
24 |
+
if len(txt) >= 1:
|
25 |
+
key_sentences = get_key_sentences(txt)
|
26 |
+
sentences = []
|
27 |
+
for i in sorted(key_sentences):
|
28 |
+
sentences.append(key_sentences[i])
|
29 |
+
|
30 |
+
paraphrased_sentences = paraphraser(sentences, top_k=top_k, top_p=top_p, num_sequences=1)
|
31 |
+
else:
|
32 |
+
sentences = []
|
33 |
+
paraphrased_sentences = []
|
34 |
+
|
35 |
+
st.header('Extracted Key Sentences')
|
36 |
+
st.write(sentences)
|
37 |
+
|
38 |
+
st.header('Paraphrase results')
|
39 |
+
st.write(paraphrased_sentences)
|
paraphraser.py
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import numpy as np
|
3 |
+
import itertools
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
7 |
+
from sentence_transformers import SentenceTransformer
|
8 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
9 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
10 |
+
|
11 |
+
|
12 |
+
class KeywordExtraction:
|
13 |
+
def __init__(self, n_gram_range=(1, 1), stop_words='english', model_name='distilbert-base-nli-mean-tokens'):
|
14 |
+
self.n_gram_range = n_gram_range
|
15 |
+
self.stop_words = stop_words
|
16 |
+
self.model_name = model_name
|
17 |
+
self.model = SentenceTransformer(self.model_name)
|
18 |
+
|
19 |
+
def __call__(self, doc, top_n=5, diversity=('mmr', 0.7)):
|
20 |
+
doc_embedding = self.get_document_embeddings(doc)
|
21 |
+
candidates = self.get_candidates(doc)
|
22 |
+
candidate_embeddings = self.get_candidate_embeddings(candidates)
|
23 |
+
try:
|
24 |
+
if diversity[0] == 'mmr':
|
25 |
+
# print('using maximal marginal relevance method...')
|
26 |
+
return self.maximal_marginal_relevance(doc_embedding,
|
27 |
+
candidate_embeddings,
|
28 |
+
candidates,
|
29 |
+
top_n=top_n,
|
30 |
+
diversity=diversity[1])
|
31 |
+
elif diversity[0] == 'mss':
|
32 |
+
# print('using max sum similarity method...')
|
33 |
+
return self.max_sum_similarity(doc_embedding,
|
34 |
+
candidate_embeddings,
|
35 |
+
candidates,
|
36 |
+
top_n=top_n,
|
37 |
+
nr_candidates=diversity[1])
|
38 |
+
else:
|
39 |
+
# print('using default method...')
|
40 |
+
return self.get_keywords(doc_embedding, candidate_embeddings, candidates, top_n)
|
41 |
+
except Exception as e:
|
42 |
+
print(e)
|
43 |
+
|
44 |
+
def get_candidates(self, doc):
|
45 |
+
# Extract candidate words/phrases
|
46 |
+
count = CountVectorizer(ngram_range=self.n_gram_range, stop_words=self.stop_words).fit([doc])
|
47 |
+
return count.get_feature_names_out()
|
48 |
+
|
49 |
+
def get_candidate_embeddings(self, candidates):
|
50 |
+
return self.model.encode(candidates)
|
51 |
+
|
52 |
+
def get_document_embeddings(self, doc):
|
53 |
+
return self.model.encode([doc])
|
54 |
+
|
55 |
+
def get_keywords(self, doc_embedding, candidate_embeddings, candidates, top_n=5):
|
56 |
+
distances = cosine_similarity(doc_embedding, candidate_embeddings)
|
57 |
+
keywords = [candidates[index] for index in distances.argsort()[0][-top_n:]]
|
58 |
+
return keywords
|
59 |
+
|
60 |
+
def max_sum_similarity(self, doc_embedding, candidate_embeddings, candidates, top_n, nr_candidates):
|
61 |
+
# Calculate distances and extract keywords
|
62 |
+
distances = cosine_similarity(doc_embedding, candidate_embeddings)
|
63 |
+
distances_candidates = cosine_similarity(candidate_embeddings,
|
64 |
+
candidate_embeddings)
|
65 |
+
|
66 |
+
# Get top_n words as candidates based on cosine similarity
|
67 |
+
words_idx = list(distances.argsort()[0][-nr_candidates:])
|
68 |
+
words_vals = [candidates[index] for index in words_idx]
|
69 |
+
distances_candidates = distances_candidates[np.ix_(words_idx, words_idx)]
|
70 |
+
|
71 |
+
# Calculate the combination of words that are the least similar to each other
|
72 |
+
min_sim = np.inf
|
73 |
+
candidate = None
|
74 |
+
for combination in itertools.combinations(range(len(words_idx)), top_n):
|
75 |
+
sim = sum([distances_candidates[i][j] for i in combination for j in combination if i != j])
|
76 |
+
if sim < min_sim:
|
77 |
+
candidate = combination
|
78 |
+
min_sim = sim
|
79 |
+
|
80 |
+
return [words_vals[idx] for idx in candidate]
|
81 |
+
|
82 |
+
def maximal_marginal_relevance(self, doc_embedding, word_embeddings, words, top_n, diversity):
|
83 |
+
# Extract similarity within words, and between words and the document
|
84 |
+
word_doc_similarity = cosine_similarity(word_embeddings, doc_embedding)
|
85 |
+
word_similarity = cosine_similarity(word_embeddings)
|
86 |
+
|
87 |
+
# Initialize candidates and already choose best keyword/keyphras
|
88 |
+
keywords_idx = [np.argmax(word_doc_similarity)]
|
89 |
+
candidates_idx = [i for i in range(len(words)) if i != keywords_idx[0]]
|
90 |
+
|
91 |
+
for _ in range(top_n - 1):
|
92 |
+
# Extract similarities within candidates and
|
93 |
+
# between candidates and selected keywords/phrases
|
94 |
+
candidate_similarities = word_doc_similarity[candidates_idx, :]
|
95 |
+
target_similarities = np.max(word_similarity[candidates_idx][:, keywords_idx], axis=1)
|
96 |
+
|
97 |
+
# Calculate MMR
|
98 |
+
mmr = (1-diversity) * candidate_similarities - diversity * target_similarities.reshape(-1, 1)
|
99 |
+
mmr_idx = candidates_idx[np.argmax(mmr)]
|
100 |
+
|
101 |
+
# Update keywords & candidates
|
102 |
+
keywords_idx.append(mmr_idx)
|
103 |
+
candidates_idx.remove(mmr_idx)
|
104 |
+
|
105 |
+
return [words[idx] for idx in keywords_idx]
|
106 |
+
|
107 |
+
|
108 |
+
def regex(phrase, m=0, n=3):
|
109 |
+
strng = "([\s]*[a-zA-Z0-9]*[\s]*){%d,%d}" % (m,n)
|
110 |
+
return strng.join(phrase.split())
|
111 |
+
|
112 |
+
def remove_square_brackets(text):
|
113 |
+
return re.sub('\[[0-9]+\]', '', text)
|
114 |
+
|
115 |
+
def remove_extra_spaces(text):
|
116 |
+
return re.sub('[\s]{2,}', ' ', text)
|
117 |
+
|
118 |
+
|
119 |
+
def preprocess_text(text):
|
120 |
+
text = re.sub('\[[0-9]+\]', '', text)
|
121 |
+
text = re.sub('[\s]{2,}', ' ', text)
|
122 |
+
text = text.strip()
|
123 |
+
return text
|
124 |
+
|
125 |
+
def sent_tokenize(text):
|
126 |
+
sents = text.split('.')
|
127 |
+
sents = [s.strip() for s in sents if len(s)>0]
|
128 |
+
return sents
|
129 |
+
|
130 |
+
def get_key_sentences(text, top_n=5, diversity=('mmr', 0.6)):
|
131 |
+
kw_extractor = KeywordExtraction(n_gram_range=(1,3))
|
132 |
+
text = preprocess_text(text)
|
133 |
+
sentences = sent_tokenize(text)
|
134 |
+
key_phrases = kw_extractor(text, top_n=top_n, diversity=diversity)
|
135 |
+
|
136 |
+
if key_phrases is None:
|
137 |
+
return None
|
138 |
+
|
139 |
+
key_sents = dict()
|
140 |
+
for phrase in key_phrases:
|
141 |
+
found = False
|
142 |
+
for i, sent in enumerate(sentences):
|
143 |
+
if re.search(regex(phrase), sent):
|
144 |
+
found = True
|
145 |
+
if i not in key_sents:
|
146 |
+
key_sents[i] = sent
|
147 |
+
if not found:
|
148 |
+
print(f'The phrase "{phrase}" was not matched!')
|
149 |
+
return key_sents
|
150 |
+
|
151 |
+
|
152 |
+
class ParaphraseModel:
|
153 |
+
def __init__(self, model_name="Vamsi/T5_Paraphrase_Paws"):
|
154 |
+
self.model_name = model_name
|
155 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
156 |
+
self.model = AutoModelForSeq2SeqLM.from_pretrained(self.model_name)
|
157 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
158 |
+
|
159 |
+
def __call__(self, inputs, top_k=200, top_p=0.95, num_sequences=5):
|
160 |
+
text = self.prepare_list_input(inputs) if type(inputs) == type([]) else f"paraphrase: {inputs} </s>"
|
161 |
+
|
162 |
+
encoding = self.tokenizer.batch_encode_plus(text, pad_to_max_length=True, return_tensors="pt")
|
163 |
+
|
164 |
+
input_ids = encoding["input_ids"].to(self.device)
|
165 |
+
attention_masks = encoding["attention_mask"].to(self.device)
|
166 |
+
|
167 |
+
outputs = self.model.generate(
|
168 |
+
input_ids=input_ids, attention_mask=attention_masks,
|
169 |
+
max_length=256,
|
170 |
+
do_sample=True,
|
171 |
+
top_k=top_k,
|
172 |
+
top_p=top_p,
|
173 |
+
early_stopping=True,
|
174 |
+
num_return_sequences=num_sequences
|
175 |
+
)
|
176 |
+
|
177 |
+
lines = []
|
178 |
+
for output in outputs:
|
179 |
+
line = self.tokenizer.decode(output,
|
180 |
+
skip_special_tokens=True,
|
181 |
+
clean_up_tokenization_spaces=True)
|
182 |
+
lines.append(line)
|
183 |
+
return lines
|
184 |
+
|
185 |
+
def prepare_list_input(self, lst):
|
186 |
+
sentences = []
|
187 |
+
for sent in lst:
|
188 |
+
sentences.append(f"paraphrase: {sent} </s>")
|
189 |
+
return sentences
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
pytorch
|
3 |
+
transformers
|
4 |
+
sentence-transformers
|
5 |
+
sklearn
|