Spaces:
Running
Running
Merge branch 'main' of https://huggingface.co/spaces/clip-italian/clip-italian-demo
Browse files- app.py +2 -1
- examples.py +12 -9
- home.py +2 -0
- image2text.py +9 -12
- introduction.md +2 -3
- text2image.py +9 -12
app.py
CHANGED
@@ -15,7 +15,8 @@ PAGES = {
|
|
15 |
st.sidebar.title("Explore our CLIP-Italian demo")
|
16 |
|
17 |
logo = Image.open("static/img/clip_italian_logo.png")
|
18 |
-
st.sidebar.image(logo
|
|
|
19 |
|
20 |
page = st.sidebar.radio("", list(PAGES.keys()))
|
21 |
PAGES[page].app()
|
|
|
15 |
st.sidebar.title("Explore our CLIP-Italian demo")
|
16 |
|
17 |
logo = Image.open("static/img/clip_italian_logo.png")
|
18 |
+
st.sidebar.image(logo)
|
19 |
+
#, caption="CLIP-Italian logo"
|
20 |
|
21 |
page = st.sidebar.radio("", list(PAGES.keys()))
|
22 |
PAGES[page].app()
|
examples.py
CHANGED
@@ -3,15 +3,17 @@ import streamlit as st
|
|
3 |
|
4 |
|
5 |
def app():
|
6 |
-
st.title("Examples & Applications")
|
|
|
|
|
|
|
7 |
st.write(
|
8 |
"""
|
9 |
|
10 |
-
## Image Retrieval
|
11 |
|
12 |
-
Even though we trained the Italian CLIP model on way less examples than the original
|
13 |
-
OpenAI's CLIP, our training choices and quality datasets led to impressive results!
|
14 |
-
Here, we
|
15 |
|
16 |
Remember you can head to the **Text to Image** section of the demo at any time to test your own🤌 Italian queries!
|
17 |
|
@@ -19,7 +21,7 @@ def app():
|
|
19 |
)
|
20 |
|
21 |
st.markdown("### 1. Actors in Scenes")
|
22 |
-
st.markdown("These examples
|
23 |
|
24 |
st.subheader("una coppia")
|
25 |
st.markdown("*a couple*")
|
@@ -39,7 +41,7 @@ def app():
|
|
39 |
st.image("static/img/examples/couple_3.jpeg")
|
40 |
|
41 |
st.markdown("### 2. Dresses")
|
42 |
-
st.markdown("These examples
|
43 |
|
44 |
col1, col2 = st.beta_columns(2)
|
45 |
col1.subheader("un vestito primavrile")
|
@@ -50,10 +52,11 @@ def app():
|
|
50 |
col2.markdown("*a dress for the autumn*")
|
51 |
col2.image("static/img/examples/vestito_autunnale.png")
|
52 |
|
53 |
-
st.markdown("## Image Classification")
|
|
|
54 |
st.markdown("We report this cool example provided by the "
|
55 |
"[DALLE-mini team](https://github.com/borisdayma/dalle-mini). "
|
56 |
"Is the DALLE-mini logo an *avocado* or an armchair (*poltrona*)?")
|
57 |
|
58 |
st.image("static/img/examples/dalle_mini.png")
|
59 |
-
st.markdown("It seems it's half an armchair and half an avocado! We thank the team for the great idea :)")
|
|
|
3 |
|
4 |
|
5 |
def app():
|
6 |
+
#st.title("Examples & Applications")
|
7 |
+
st.markdown("<h1 style='text-align: center; color: #CD212A;'> Examples & Applications </h1>", unsafe_allow_html=True)
|
8 |
+
st.markdown("<h2 style='text-align: center; color: #008C45; font-weight:bold;'> Complex Queries -Image Retrieval </h2>", unsafe_allow_html=True)
|
9 |
+
|
10 |
st.write(
|
11 |
"""
|
12 |
|
|
|
13 |
|
14 |
+
Even though we trained the Italian CLIP model on way less examples(~1.4M) than the original
|
15 |
+
OpenAI's CLIP (~400M), our training choices and quality datasets led to impressive results!
|
16 |
+
Here, we present some of **the most impressive text-image associations** learned by our model.
|
17 |
|
18 |
Remember you can head to the **Text to Image** section of the demo at any time to test your own🤌 Italian queries!
|
19 |
|
|
|
21 |
)
|
22 |
|
23 |
st.markdown("### 1. Actors in Scenes")
|
24 |
+
st.markdown("These examples were taken from the CC dataset")
|
25 |
|
26 |
st.subheader("una coppia")
|
27 |
st.markdown("*a couple*")
|
|
|
41 |
st.image("static/img/examples/couple_3.jpeg")
|
42 |
|
43 |
st.markdown("### 2. Dresses")
|
44 |
+
st.markdown("These examples were taken from the Unsplash dataset")
|
45 |
|
46 |
col1, col2 = st.beta_columns(2)
|
47 |
col1.subheader("un vestito primavrile")
|
|
|
52 |
col2.markdown("*a dress for the autumn*")
|
53 |
col2.image("static/img/examples/vestito_autunnale.png")
|
54 |
|
55 |
+
#st.markdown("## Image Classification")
|
56 |
+
st.markdown("<h2 style='text-align: center; color: #008C45; font-weight:bold;'> Zero Shot Image Classification </h2>", unsafe_allow_html=True)
|
57 |
st.markdown("We report this cool example provided by the "
|
58 |
"[DALLE-mini team](https://github.com/borisdayma/dalle-mini). "
|
59 |
"Is the DALLE-mini logo an *avocado* or an armchair (*poltrona*)?")
|
60 |
|
61 |
st.image("static/img/examples/dalle_mini.png")
|
62 |
+
st.markdown("It seems it's half an armchair and half an avocado! We thank the DALLE-mini team for the great idea :)")
|
home.py
CHANGED
@@ -7,5 +7,7 @@ def read_markdown_file(markdown_file):
|
|
7 |
|
8 |
|
9 |
def app():
|
|
|
|
|
10 |
intro_markdown = read_markdown_file("introduction.md")
|
11 |
st.markdown(intro_markdown, unsafe_allow_html=True)
|
|
|
7 |
|
8 |
|
9 |
def app():
|
10 |
+
st.markdown("<h1 style='text-align: center; color: #CD212A;'> CLIP-Italian </h1>", unsafe_allow_html=True)
|
11 |
+
|
12 |
intro_markdown = read_markdown_file("introduction.md")
|
13 |
st.markdown(intro_markdown, unsafe_allow_html=True)
|
image2text.py
CHANGED
@@ -10,25 +10,22 @@ import gc
|
|
10 |
|
11 |
|
12 |
def app():
|
13 |
-
st.title("From Image to Text")
|
|
|
|
|
14 |
st.markdown(
|
15 |
"""
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
Here you can find the captions or the labels that are most related to a given image. It is a zero-shot
|
20 |
-
image classification task!
|
21 |
-
|
22 |
-
🤌 Italian mode on! 🤌
|
23 |
|
24 |
-
|
25 |
"classify"!
|
26 |
|
27 |
"""
|
28 |
)
|
29 |
|
30 |
image_url = st.text_input(
|
31 |
-
"
|
32 |
value="https://www.petdetective.it/wp-content/uploads/2016/04/gatto-toilette.jpg",
|
33 |
)
|
34 |
|
@@ -38,14 +35,14 @@ def app():
|
|
38 |
|
39 |
with col2:
|
40 |
captions_count = st.selectbox(
|
41 |
-
"
|
42 |
)
|
43 |
-
compute = st.button("
|
44 |
|
45 |
with col1:
|
46 |
captions = list()
|
47 |
for idx in range(min(MAX_CAP, captions_count)):
|
48 |
-
captions.append(st.text_input(f"
|
49 |
|
50 |
if compute:
|
51 |
captions = [c for c in captions if c != ""]
|
|
|
10 |
|
11 |
|
12 |
def app():
|
13 |
+
#st.title("From Image to Text")
|
14 |
+
st.markdown("<h1 style='text-align: center; color: #CD212A;'> Zero Shot Image Classification </h1>", unsafe_allow_html=True)
|
15 |
+
st.markdown("<h2 style='text-align: center; color: #008C45; font-weight:bold;'> Image to Text </h2>", unsafe_allow_html=True)
|
16 |
st.markdown(
|
17 |
"""
|
18 |
|
19 |
+
👋 Ciao! Here you can find the captions or the labels that are most related to a given image.
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
Try typing "gatto" (cat) in the space for label1 and "cane" (dog) in the space for label2 and click
|
22 |
"classify"!
|
23 |
|
24 |
"""
|
25 |
)
|
26 |
|
27 |
image_url = st.text_input(
|
28 |
+
"YOU CAN INPUT THE URL OF AN IMAGE : ",
|
29 |
value="https://www.petdetective.it/wp-content/uploads/2016/04/gatto-toilette.jpg",
|
30 |
)
|
31 |
|
|
|
35 |
|
36 |
with col2:
|
37 |
captions_count = st.selectbox(
|
38 |
+
"NUMBER OF LABELS", options=range(1, MAX_CAP + 1), index=1
|
39 |
)
|
40 |
+
compute = st.button("CLASSIFY")
|
41 |
|
42 |
with col1:
|
43 |
captions = list()
|
44 |
for idx in range(min(MAX_CAP, captions_count)):
|
45 |
+
captions.append(st.text_input(f"INSERT LABEL {idx+1}"))
|
46 |
|
47 |
if compute:
|
48 |
captions = [c for c in captions if c != ""]
|
introduction.md
CHANGED
@@ -1,11 +1,10 @@
|
|
1 |
-
# CLIP-Italian
|
2 |
|
3 |
-
CLIP-Italian is a multimodal model trained on
|
4 |
|
5 |
Clip-Italian (Contrastive Language-Image Pre-training in Italian language) is based on OpenAI’s CLIP ([Radford et al., 2021](https://arxiv.org/abs/2103.00020))which is an amazing model that can learn to represent images and text jointly in the same space.
|
6 |
|
7 |
In this project, we aim to propose the first CLIP model trained on Italian data, that in this context can be considered a
|
8 |
-
low resource language. Using a few techniques, we have been able to fine-tune a SOTA Italian CLIP model with **only 1.
|
9 |
is built upon the pre-trained [Italian BERT](https://huggingface.co/dbmdz/bert-base-italian-xxl-cased) model provided by [dbmdz](https://huggingface.co/dbmdz) and the OpenAI
|
10 |
[vision transformer](https://huggingface.co/openai/clip-vit-base-patch32).
|
11 |
|
|
|
|
|
1 |
|
2 |
+
CLIP-Italian is a **multimodal** model trained on **~1.4 Million** Italian text-image pairs using **Italian Bert** model as text encoder and Vision Transformer **ViT** as image encoder using the **JAX/Flax** neural network library. The training was carried out during the **Hugging Face** Community event on **Google's TPU** machines, sponsored by **Google Cloud**.
|
3 |
|
4 |
Clip-Italian (Contrastive Language-Image Pre-training in Italian language) is based on OpenAI’s CLIP ([Radford et al., 2021](https://arxiv.org/abs/2103.00020))which is an amazing model that can learn to represent images and text jointly in the same space.
|
5 |
|
6 |
In this project, we aim to propose the first CLIP model trained on Italian data, that in this context can be considered a
|
7 |
+
low resource language. Using a few techniques, we have been able to fine-tune a SOTA Italian CLIP model with **only 1.4M** training samples. Our Italian CLIP model
|
8 |
is built upon the pre-trained [Italian BERT](https://huggingface.co/dbmdz/bert-base-italian-xxl-cased) model provided by [dbmdz](https://huggingface.co/dbmdz) and the OpenAI
|
9 |
[vision transformer](https://huggingface.co/openai/clip-vit-base-patch32).
|
10 |
|
text2image.py
CHANGED
@@ -108,23 +108,20 @@ headers = {
|
|
108 |
def app():
|
109 |
|
110 |
#st.title("From Text to Image")
|
111 |
-
st.markdown("<h1 style='text-align: center; color: #CD212A;'>Image Retrieval</h1>", unsafe_allow_html=True)
|
112 |
-
st.markdown("<h2 style='text-align: center; color: #008C45;font-weight:bold;'>Text to Image</h2>", unsafe_allow_html=True)
|
113 |
st.markdown(
|
114 |
"""
|
115 |
|
116 |
-
|
117 |
-
|
118 |
-
Here you can search for ~150.000 images in the Conceptual Captions dataset (CC) or in the Unsplash 25k Photos dataset.
|
119 |
-
Even though we did not train on any of these images you will see most queries make sense. When you see errors, there might be two possibilities:
|
120 |
-
the model is answering in a wrong way or the image you are looking for are not in the dataset and the model is giving you the best answer it can get.
|
121 |
-
|
122 |
|
|
|
123 |
|
124 |
-
|
125 |
-
|
126 |
|
127 |
-
You can choose one of
|
128 |
"""
|
129 |
)
|
130 |
|
@@ -160,7 +157,7 @@ st.markdown("<h2 style='text-align: center; color: #008C45;font-weight:bold;'>Te
|
|
160 |
|
161 |
col1, col2 = st.beta_columns([3, 1])
|
162 |
with col1:
|
163 |
-
query = st.text_input("
|
164 |
with col2:
|
165 |
dataset_name = st.selectbox("IR dataset", ["CC", "Unsplash"])
|
166 |
|
|
|
108 |
def app():
|
109 |
|
110 |
#st.title("From Text to Image")
|
111 |
+
st.markdown("<h1 style='text-align: center; color: #CD212A;'> Image Retrieval </h1>", unsafe_allow_html=True)
|
112 |
+
st.markdown("<h2 style='text-align: center; color: #008C45; font-weight:bold;'> Text to Image </h2>", unsafe_allow_html=True)
|
113 |
st.markdown(
|
114 |
"""
|
115 |
|
116 |
+
|
117 |
+
👋 Ciao! Here you can type Italian query and search from ~150k images in the Conceptual Captions (CC) dataset or 25k Photos in the Unsplash dataset.
|
|
|
|
|
|
|
|
|
118 |
|
119 |
+
Though these images were not used for training the model, you will see most queries make sense.
|
120 |
|
121 |
+
Rare errors might be due to 2 possibilities:
|
122 |
+
a)The model is answering in a wrong way or b) the image you are looking for are not in the dataset & the model is giving you the best answer it can get.
|
123 |
|
124 |
+
You can choose from one of the following examples :
|
125 |
"""
|
126 |
)
|
127 |
|
|
|
157 |
|
158 |
col1, col2 = st.beta_columns([3, 1])
|
159 |
with col1:
|
160 |
+
query = st.text_input("OR INSERT AN ITALIAN QUERY TEXT : ")
|
161 |
with col2:
|
162 |
dataset_name = st.selectbox("IR dataset", ["CC", "Unsplash"])
|
163 |
|