Spaces:
Sleeping
Sleeping
import os | |
from dotenv import load_dotenv | |
import httpx | |
import streamlit as st | |
from langchain.prompts import PromptTemplate | |
from langchain_huggingface import HuggingFaceEndpoint | |
from langchain_core.messages import BaseMessage, HumanMessage | |
from langgraph.graph import MessageGraph, END | |
from typing import Sequence | |
load_dotenv() | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
WEATHER_TOKEN = os.getenv("WEATHER_TOKEN") | |
# streamlit app | |
st.title("City Weather Information with AI Review") | |
city = st.text_input("Enter the name of a city:") | |
# Initialize the HuggingFace inference endpoint | |
llm = HuggingFaceEndpoint( | |
repo_id="mistralai/Mistral-7B-Instruct-v0.3", | |
huggingfacehub_api_token=HF_TOKEN.strip(), | |
temperature=0.7, | |
max_new_tokens=200 | |
) | |
# Define nodes | |
def fetch_weather_node(state: Sequence[BaseMessage]) -> str: | |
city = state[0].content.strip() | |
url = f"https://api.openweathermap.org/data/2.5/weather?q={city}&appid={WEATHER_TOKEN}&units=metric" | |
try: | |
response = httpx.get(url) | |
response.raise_for_status() | |
weather_data = response.json() | |
weather = weather_data['weather'][0]['main'] | |
temperature = weather_data['main']['temp'] | |
return f"The current weather in {city} is {weather} with a temperature of {temperature}°C." | |
except Exception as e: | |
return f"Error: {e}" | |
def generate_review_node(state: Sequence[BaseMessage]) -> str: | |
input_text = state[0].content | |
response = llm(input_text) | |
return response | |
# Define the prompt template for generating weather reviews | |
review_prompt_template = """ | |
You are an expert weather analyst. Based on the provided weather information, generate a detailed and insightful review. | |
Weather Information: {weather_info[1]} | |
Your review should include an analysis of the weather conditions and finish in 100 words. | |
Review: | |
""" | |
# Create and configure the graph | |
builder = MessageGraph() | |
# Add nodes | |
builder.add_node("fetch_weather", fetch_weather_node) | |
builder.add_node("generate_review", generate_review_node) | |
builder.set_entry_point("fetch_weather") | |
# Define transitions | |
builder.add_edge("fetch_weather", "generate_review") | |
builder.set_finish_point("generate_review") | |
# Compile the graph | |
graph = builder.compile() | |
# Streamlit app | |
if st.button("Get Weather Information and Review"): | |
if city: | |
with st.spinner("Processing..."): | |
try: | |
# Prepare the input for the graph | |
weather_info = graph.invoke(HumanMessage(content=city)) | |
st.write(weather_info[1].content) | |
# Generate the review using the refined prompt | |
review_input = review_prompt_template.format(weather_info=weather_info) | |
review = graph.invoke(HumanMessage(content=review_input)) | |
st.subheader("AI Generated Weather Review") | |
st.write(review[2].content) | |
st.subheader("Mermaid Graph") | |
st.write("Check out this [mermaid link](https://mermaid.live/) to display a graph with following data") | |
mermaid_code = graph.get_graph().draw_mermaid() | |
st.markdown( | |
f""" | |
```mermaid | |
{mermaid_code} | |
""", | |
unsafe_allow_html=True | |
) | |
except Exception as e: | |
st.error(f"Error generating weather review: {e}") | |
else: | |
st.warning("Please enter a city name.") | |