demo / app.py
cnealex's picture
Update app.py
b16c607 verified
raw
history blame
2.6 kB
from transformers import pipeline
import gradio as gr
import pandas as pd
def coding(model, text, codetext):
classifier = pipeline("zero-shot-classification", model=model)
codelist = codetext.split(';')
output = classifier(text, codelist, multi_label=True)
# keys = output.labels
# values = output.scores
keys = output['labels']
values = output['scores']
my_dict = {k: v for k, v in zip(keys, values)}
return [my_dict, output]
def upload_code_list(file):
df = pd.read_excel(file.name, sheet_name='code')
joined_data = ';'.join(df['label'].astype(str))
return joined_data
css = """
h2.svelte-1pq4gst{display:none}
"""
demo = gr.Blocks(css=css)
with demo:
gr.Markdown(
"""
# NuanceTree
# Coding Test Program
"""
)
with gr.Row():
with gr.Column():
select_model = gr.Radio(
[
"facebook/bart-large-mnli",
"MoritzLaurer/multilingual-MiniLMv2-L6-mnli-xnli",
"MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7",
"MoritzLaurer/mDeBERTa-v3-base-mnli-xnli",
"MoritzLaurer/deberta-v3-large-zeroshot-v2.0",
],
value="MoritzLaurer/multilingual-MiniLMv2-L6-mnli-xnli",
label="Model"
)
comment_text = gr.TextArea(
label='Comment',
value='感覺性格溫和,特別係亞洲人的肌膚,不足之處就是感覺很少有優惠,價錢都比較貴'
)
codelist_text = gr.Textbox(
label='Code list (colon-separated)',
value='非常好;很好;好滿意;價錢合理;實惠'
)
with gr.Row():
clear_codelist_btn = gr.ClearButton(value="Clear Code List")
clear_codelist_btn.click(lambda: None, outputs=[codelist_text])
upload_btn = gr.UploadButton(
label="Upload",
variant='primary'
)
upload_btn.upload(upload_code_list, upload_btn, codelist_text)
run_btn = gr.Button(
value="Submit",
variant='primary'
)
with gr.Column():
result_label = gr.Label(show_label=False)
result_text = gr.JSON()
run_btn.click(coding, [select_model, comment_text, codelist_text], [result_label, result_text], scroll_to_output=True)
if __name__ == "__main__":
demo.launch()